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Preface

This text is suitable for a one-semester course on continuum mechanics. It is based on
notes from undergraduate courses that I have taught over the last few years. The material
is intended for use by undergraduate students of physics with a year or more of college
calculus behind them.

I would like to thank Erik Grafarend, Ctirad Matyska, Detlef Wolf and Ji�r�� Zahradn��k,
whose interest encouraged me to write this text. I would also like to thank my oldest son
Zden�ek who plotted all �gures embedded in the text.

Readers of this text are encouraged to contact me with their comments, suggestions,
and questions. I would be very happy to hear what you think I did well and I could do
better. My e-mail address is zdenek@hervam.troja.m�.cuni.cz and a full mailing address
is found on the title page.

Zden�ek Martinec
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1. STRAIN

1.1 Particles, con�gurations, deformation, and motion

In continuummechanics we considermaterial bodies in the form of solids, liquids, and gases.
Let us begin by describing the model we use to represent such bodies. For this purpose we
de�ne the material body as the set of elements, called particles ormaterial points, which can
be put into one-to-one correspondence with the points of a regular region of physical space.
Note that whereas a "particle" of classical mechanics has an assigned mass, a "continuum
particle" is essentially a material point for which a density is de�ned.

The speci�cation of the position of all particles of a material body with respect to a
�xed origin at some instant of time is said to de�ne the con�guration of the body at that
instant. We give special meaning to certain con�gurations of the body.

In particular, we single out a reference con�guration from which all displacements are
reckoned. For the purpose it serves, the reference con�guration needs not be one which
the body ever actually occupies. We choose, however, the initial con�guration, that is, the
one which the body occupies at time t = 0, as the reference con�guration and the ensuing
deformations and motions are related to it. The material points of a continuous medium
at the reference con�guration occupy a region B which consists of the material volume V
and its surface S. The position of a material point P in region B may be denoted by a
rectangular coordinate system XK , K = 1; 2; 3, or by a vector X that extends from an
origin O of the coordinates to the point P (Figure 1.1).

After deformation takes place, at the current time t, the material points of B + V
occupy the current con�guration in a region b consisting of a spatial volume v and its
surface s. In this deformed state, a material point may occupy a spatial point p. We may
locate p by a vector x extending from the origin o of a new coordinate frame or by a set
of rectangular coordinates xk, k = 1; 2; 3. Following the current terminology, we shall call
XK the material or Lagrangian coordinates and xk the spatial or Eulerian coordinates. In
next considerations we assume that these two coordinate frames, one for the undeformed
body and one for the deformed body, are nonidentical. Let us emphasize that the material
coordinates are used in conjunction with the reference con�guration only and that the
spatial coordinates serve for all other con�gurations. As has been remarked already, the
material coordinates are therefore time independent.

Under the inuence of the external loads, the body B moves and deforms. The de-
formation and motion of the body carries various material points through various spatial
positions. This is expressed by a one-parameter family of mappings

xk = �k(X1;X2;X3; t) or xk = �k(XK ; t) k = 1; 2; 3 ; (1:1)

or, conversely,

XK = ��1K (x1; x2; x3; t) or XK = ��1K (xk; t) K = 1; 2; 3 : (1:2)
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Figure 1.1. Coordinate system for an undeformed body B and a deformed body b.

For brevity, we may also write these in coordinate-free (or symbolic) notation

x = �(X; t); X = ��1(x; t) : (1:3)

Equation (1.1) states that the motion takes a material point P in the reference con�guration
B to a current position p in the current con�guration b at time t. The inverse motion (1.2)
states the inverse phenomenon, namely, that we can trace the material point occupying the
current position x at time t to its original positionX . It is common practice in continuum
mechanics to write these equations in the alternative forms

x = x(X; t); X =X(x; t) (1:4)

with understanding that the symbol x (or, X) on the right-hand sides of these equations
represents the function whose arguments are X (or, x) and t while the same symbol on
the left-hand sides represents the value of the function, that is a point in the space. We
shall use this notation frequently in the text that follows.

We assume that the mappings (1.3) are single-valued and possess continuous partial
derivatives with respect to their arguments for whatever order is desired, except possibly at
some singular points, curves, and surfaces. Moreover, each member of (1.3) is the unique
inverse of the other in a neighborhood of the material point P . This assumption is known
as the axiom of continuity. It expresses the fact that the matter is indestructible, that is,
no region of positive, �nite volume of matter is deformed into a zero or in�nite volume.
Another implication of this axiom is that the matter is impenetrable, that is, the motion
caries every region into a region, every surface into a surface, and every curve into a curve.
One portion of matter never penetrates into another. In practice, there are cases in which
this axiom is violated. For example, the material may break or may transmit shock and
other types of discontinuities. Special attention must be given to these. The axiom of
continuity is secured through the well-known implicit function theorem.
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Theorem (Implicit function). If, for a �xed time t the functions xk(XK; t) are
continuous and possess continuous �rst-order partial derivatives with respect to XK in a
neighborhood jX 0

K �XK j < � of the point P , and if the jacobian

j := det

�
@xk
@XK

�
(1:5)

does not vanish there, then a unique inverse of the form (1.3) exists in a neighborhood of
jx0k � xkj < � of a point p at time t.

If we determine x as a function of time for each material point P (that is, given by
X), we can construct the new shape and position of the body at each time t relative to
that at t = 0. This enables us to calculate the change of length between any two points
and the change of angle between any two directions. The ultimate goal is to relate these
deformations to the external e�ects (for example, external forces, thermal changes). With
the possession of such a knowledge, one may hope to design machines and buildings or
analyse the existing natural or man-made materials and structures so that not only can
failure be avoided, but also maximum performance can be achieved. Thus, the subject of
continuous media deals, in essence, with the determination of the explicit form of (1.3)
when the external e�ects and initial and boundary conditions of the body are known.

The quantities associated with the undeformed body B will be denoted by capital
letters, and those associated with the deformed body b by lower case letters. When these
quantities are referred to coordinates XK , their indices will be majuscules; and when
they are referred to xk, their indices will be minuscules. For example, a vector V in B
referred to XK will have components VK , and referred to xk will have the components Vk.
Conversely, a vector v in b referred to XK and xk will have components denoted by vK and
vk, respectively.

1.2 Base vectors, shifters

The position vectorsX of a point P inB and x of p in b, respectively, referred to rectangular
coordinates XK and xk are given by

X = XKIK; x = xkik ; (1:6)

where IK and ik are, respectively the unit base vectors in Figure 1.1. Henceforth, we
employ the usual summation convention over repeated indices, that is,

X = XKIK = X1I1 +X2I2 +X3I3 : (1:7)

In�nitesimal di�erential vectors dX at P and dx at p may be expressed as

dX = dXKIK; dx = dxkik : (1:8)

Thus the squares of the elements of length in B and b are, respectively,

dS2 = dX � dX = �KLdXKdXL = dXK dXK ; (1:9)
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ds2 = dx � dx = �kldxkdxl = dxk dxk ;

where
�KL = IK � IL; �kl = ik � il (1:10)

are the Kronecker symbols, which are equal to 1 when the two indices are equal and zero
otherwise.

When the two rectangular coordinates are not identical, we shall also express a vector
in one frame (say xk) in terms of its projection in another frame (say XK). For any vector
we may write

v = V = vkik = VKIK : (1:11)

By taking the scalar products of this by IL and il we �nd the components VK of v in XK

and the components vk of v in xk:

VK = V � IK = v � IK = vkik � IK = vk�kK ; (1:12)

where
�kK = �Kk =: ik � IK (1:13)

are called shifters. They are not a Kronecker symbol except when the two frames are
identical. It is clear that (1.13) is none other than the cosine directors of the two frames
of reference xk and XK. Note that the dual of (1.12) is

vk = �kKVK ; VK = �Kkvk : (1:14)

By carrying one of (1.12), (1.14) into the other, we �nd that

�Kk�kL = �KL; �kK�Kl = �kl : (1:15)

Finally, if we substitute (1.14) into (1.11) and assume that the result must be valid for all
vectors, we get

ik = �kKIK ; IK = �Kkik : (1:16)

1.3 Deformation gradients and deformation tensors

From (1.1) and (1.2), for �xed time, we have

dxk = xk;KdXK ; dXK = XK;kdxk ; (1:17)

where indices following a comma represent partial di�erentiation with respect to XK, when
they are majuscules, and with respect to xk when they are minuscules, that is,

xk;K :=
@xk
@XK

; XK;k :=
@XK

@xk
: (1:18)

The two sets of quantities de�ned by (1.18) are components of the deformation gradient
tensors, or simply the deformation gradients F and F �1,

F (X; t) := xk;K(X; t) ikIK ; F�1(x; t) := XK;k(x; t) IKik ; (1:19)
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where ikIK and IKik are the dyadic products of basis vectors ik and IK . The deformation
gradients F and F�1 are two-point tensor �elds, i.e., their components transform like those
of a vector under rotations of only one of two reference axes and like a two-point tensor
when the two sets of axes are rotated independently. In symbolic notation, eqn.(1.17)
appears in the form

dx = F � dX ; dX = F�1 � dx ; (1:20)

where dot `�' stands for the scalar product of vectors and tensors. The deformation gradient
F can be thought of as a mapping of the in�nitesimal vector dX of the reference con�gu-
ration into the in�nitesimal vector dx of the current con�guration; the inverse mapping is
performed by the spatial deformation gradient F�1.

Through the chain rule of partial di�erentiation it is clear that

xk;KXK;l = �kl ; XK;kxk;L = �KL ; (1:21)

or in symbolic notation,
F � F�1 = F�1 � F = I ;

where I is the identity tensor. Hence, the spatial deformation gradient F�1 is the inverse
tensor of the deformation gradient F . Each of the two sets of equations (1.21) consists of
nine linear equations for the nine unknown xk;K or XK;k. Since the jacobian is assumed
not to vanish, a unique solution exists and, according to Cramer's rule of determinants,
the solution for XK;k may be obtained in terms of xk;K as

XK;k =
cofactor (xk;K)

j
=

1

2j
�KLM�klmxl;Lxm;M ; (1:22)

where �KLM and �klm are the permutation symbols, and

j := det (xk;K) = detF =
1

3!
�KLM �klmxk;Kxl;Lxm;M : (1:23)

By di�erentiating (1.22) and (1.23) we get the following Jacobi identities:

(jXK;k);K = 0 ;
�
j�1xk;K

�
;k
= 0 ; (1:24)

@j

@xk;K
= cofactor (xk;K) = jXK;k : (1:25)

If we substitute (1.17) into (1.8), we obtain

dX = ckdxk ; dx = CKdXK ; (1:26)

where
ck(x; t) := XK;kIK ; CK(X; t) := xk;Kik : (1:27)

From these, we may solve IK and ik. For example, multiply (1.27)1 by xk;l and use (1.21)2
to solve for IK , and similarly multiply (1.27)2 by XK;l and use (1.21)1 to solve ik. Thus

IK = xk;Kck ; ik = XK;kCK : (1:28)
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In the same way as in (1.9), by use of (1.26), we see that

dS2 = ckldxkdxl ; ds2 = CKLdXKdXL ; (1:29)

where
ckl(x; t) := ck � cl = �KLXK;kXL;l = XK;kXK;l ; (1:30)

CKL(X ; t) := CK �CL = �klxk;Kxl;L = xk;Kxk;L ;

are, respectively, Cauchy's deformation tensor and Green's deformation tensor. They can
be expressed in terms of deformation gradients,

c = (F�1)T � (F�1) ; C = F T � F : (1:31)

Both of these tensors are symmetric, that is c = cT , C = CT .
Two other equally important tensors are the reciprocal tensors b and B (known as the

Finger and Piola deformation tensors, respectively) de�ned by

b(x; t) := F � F T ; B(X; t) := (F �1) � (F�1)T : (1:32)

which, in indicial notation, read

bkl(x; t) := xk;Kxl;K BKL(X; t) := XK;kXL;k :

They satisfy
b � c = c � b = I ; B �C = C �B = I ; (1:33)

which can be shown by mere substitution of (1.31) and (1.32).
We have been using the word tensor for quantities such as CKL and ckl. This term

referees to a set of quantities that transform according to a certain de�nite law upon coor-
dinate transformation. Suppose that coordinates XK are transformed into X 0

K according
to

XK = XK(X
0

1;X
0

2;X
0

3) : (1:34)

The left-hand side of (1.29)2 is independent of the coordinate transformations. If on the
right-hand side we put

dXK =
@XK

@X 0

M

dX 0

M ; (1:35)

we get

ds2 = CKL

@XK

@X 0

M

@XL

@X 0

N

dX 0

MdX 0

N = C 0

MNdX
0

MdX
0

N : (1:36)

Hence

C 0

MN(X
0; t) = CKL(X; t)

@XK

@X 0

M

@XL

@X 0

N

(1:37)

since dX 0

M is arbitrary and CKL = CLK. Thus, knowing CKL in one set of coordinates
XK , we can �nd the corresponding quantities in another set X 0

K once the relations (1.34)
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between XK and X 0

K are given. Quantities that transform according to the law of trans-
formation (1.37) are known as absolute tensors.

1.4 Rotation and stretch tensors

The basic properties of the local behavior of deformation emerge from the possibility to
decompose the deformation into a rotation and stretch which, roughly speaking, is a change
of the shape of the volume element. This decomposition is called the polar decomposition
of the deformation gradient, and it is summarized in the following theorem.

A non-singular tensor F (detF 6= 0) admits the polar decompositions such that

F = R �U = V �R ; (1:38)

where the particular factors have the following properties:

1. The tensor R is orthogonal, R �RT = RT �R = I , i.e., R is a rotation tensor.

2. The tensors U and V are symmetric and positive de�nite.

3. U , V and R are uniquely determined.

4. The eigenvalues of U and V are identical; if e is an eigenvector of U , then R � e is an
eigenvector of V .

As a preliminary to proving these statements, we note that an arbitrary tensor T is
positive de�nite if v �T �v > 0 for all vectors v 6= 0. A necessary and su�cient condition for
T to be positive de�nite is that all its eigenvalues be positive. In this regard, consider the
Green deformation tensor C = F T �F . Since F is assumed to be non-singular (detF 6= 0)
and F �v 6= 0 if v 6= 0, it follows that (F �v) � (F �v) is a sum of squares and hence greater
than zero. Thus

0 < (F � v) � (F � v) = v � F T � F � v = v �C � v ;

and C is positive de�nite. By the same arguments, we may show that Finger's deformation
tensor b = F � F T is also positive de�nite.

The positive roots of C and b de�ne two tensors U and V ,

U :=
p
C =

p
F T � F ; V :=

p
b =

p
F � F T : (1:39)

The tensors U and V , called the right and left stretch tensors, are symmetric, positive
de�nite and are uniquely determined. Next, two tensors R and ~R are de�ned by

R := F �U�1 ; ~R := V �1 � F : (1:40)

We recognize that both are orthogonal since by de�nition we have

R �RT =
�
F �U�1

� � �F �U�1
�T

= F �U�1 �U�1 � F T = F � �U 2
�
�1 �F T =

= F � �F T � F ��1 � F T = F � F�1 � (F T )�1 � F T = I : (1:41)
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A similar proof holds for ~R. So far we have demonstrated two decompositions F = R �U =
V � ~R, where U and V are symmetric, positive de�nite and R and ~R are orthogonal. From

F = V � ~R =
�
~R � ~RT

�
� V � ~R = ~R �

�
~R
T � V � ~R

�
= ~R � ~U (1:42)

it may be concluded that there might be two decompositions of F , namely F = R �U and
F = ~R � ~U . However, if this were true we were forced to conclude that C = F T � F =
~U
2
= U2, whence follows that ~U = U , because of the uniqueness of the positive root.

This implies ~R = R; consequently, U , V and R are unique.
Finally, we assume e and � to be an eigenvector and eigenvalue of U . Then, we have

�e = U � e, as well as �R � e = (R � U) � e = (V � R) � e = V � (R � e). Thus � is also
eigenvalue of V and R � e is an eigenvector. This completes the proof of the theorem.

Equation dx = F � dX shows that the deformation gradient F can be thought of as a
mapping of the in�nitesimal vector dX of the reference con�guration into the in�nitesimal
vector dx of the current con�guration. The theorem of polar decomposition replaces the
linear transformation dx = F � dX by two sequential transformations, by rotation and
stretching, where the sequence of these two steps may be interchanged, as illustrated in
Figure 1.2. The combination of rotation and stretching corresponds to the multiplication
of two tensors, namely, R and U or V and R,

dx = (R �U) � dX = (V �R) � dX : (1:43)

I3

I2

I1

i3

i2i1

X

U

R

F

R

V
x

dX dx

Figure 1.2. Polar decomposition.
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However, R should not be understood as a rigid body rotation since, in general case, it
varies from point to point. Thus the polar decomposition theorem reects only a local
property of motion.

1.5 Strain tensors and displacement vector

From (1.9) and (1.29) we have two di�erent expressions of the squares of element of length,
dS2 in the undeformed body and ds2 in the deformed body,

dS2 = �KLdXKdXL = ckldxkdxl ; (1:44)

ds2 = CKLdXKdXL = �kldxkdxl :

The di�erence ds2�dS2 for the same material points in B and b is a measure of the change
of length. When this di�erence vanishes for any two neighboring points, the deformation
has not changed the distance between the pair. When it is zero for all points in the body,
the body has undergone only a rigid displacement.

Thus, from (1.44) for this di�erence, in the same coordinate system, we obtain

ds2 � dS2 = 2EKL(X; t)dXKdXL = 2ekl(x; t)dxkdxl ; (1:45)

or, in symbolic notation,

ds2 � dS2 = dX � 2E � dX = dx � 2e � dx ;

where

EKL :=
1

2
(CKL � �KL) ; ekl :=

1

2
(�kl � ckl) ; (1:46)

or
2E := C � I ; 2e := I � c ;

are called Lagrangian and Eulerian strain tensors, respectively. Clearly, when either van-
ishes, ds2 = dS2.

From (1.45) we can see that

EKL = eklxk;Kxl;L ; ekl = EKLXK;kXL;l ; (1:47)

which exhibit the fact that both EKL and ekl are second-order absolute tensors.
We may express the strain components in terms of the displacement vector u that

extends from a material points P in the undeformed body to its spatial position in the
deformed body, as illustrated in Figure 1.3:

u := x�X + b = xlil �XLIL + b : (1:48)

The displacement vector may be expressed in terms of its Lagrangian and Eulerian com-
ponents UK and uk as

u = U = ulil = ULIL : (1:49)
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Figure 1.3. Displacement vector.

By taking the scalar product of both sides of (1.48) by ik or IK , we obtain

uk = xk � �kLXL + bk ; UK = �Klxl �XK +BK ; (1:50)

where bk = b � ik and BK = b � IK . Here again we can see the appearance of shifters.
Di�erentiating the last equation with respect to XM , we have

UK;M = �Klxl;M � �KM or H = F T � I ; (1:51)

where H is the displacement gradient tensor, or simply displacement gradient,

H(X; t) := GradU (X; t) : (1:52)

We now calculate the strain tensors. First from (1.27) and (1.48) we have

CK =
@x

@XK

=
@X

@XK

+
@u

@XK

= IK + UM;KIM ; (1:53)

ck =
@X

@xk
=

@x

@xk
� @u

@xk
= ik � um;kim ;

which yields
CKL = CK �CL = (IK + UM;KIM ) � (IL + UN;LIN ) =
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= �KL + UK;L + UL;K + UM;KUM;L ; (1:54)

or, in symbolic notation,
C = I +H +HT +H �HT :

Substituting this into (1.46)1, we obtain

EKL =
1

2
(UK;L + UL;K + UM;KUM;L) or E =

1

2

�
H +HT +H �HT

�
: (1:55)

A similar procedure starting with ck of (1.53)2 gives

ekl =
1

2
(uk;l + ul;k � um;kum;l) : (1:56)

We can see that both EKL and ekl are symmetric tensors, that is,

EKL = ELK ; ekl = elk : (1:57)

Therefore, in three dimensions there are only six independent components for each of these
tensors, for example, E11, E22, E33, E12 = E21, E13 = E31, and E23 = E32. The �rst three
components E11, E22, and E33 are called normal strains and the last three E12, E13, and
E23 are called shear strains. The reason for this will be discussed later in this chapter.

1.6 Geometric linearization

The whole kinematics of deformable bodies is considerably simpli�ed, if deformations are
assumed to be small. In this context, a convenient measure of smallness is the norm of the
displacement gradient,

� = kHk =
p
H :: H =

p
UK;LUL;K : (1:58)

In the following, the term small deformation will correspond to the case of small displace-
ment gradients. This means that all �rst derivatives of the displacements with respect to
the coordinates are su�ciently small such that linearization is justi�ed, that is, all terms of
higher order are ignored. In its geometrical interpretation a small value of � implies small
strains as well as small rotations.

In the context of small strains and rotations geometrical linearization is the process of
developing of all kinematics variables with respect to � and dropping all terms of orders
higher than O(�). This de�nition implies the following asymptotic relations:

F = I +HT ; (exact) (1.59)

F�1 = I �HT +O(�2) ; (1.60)

detF = 1 + trH +O(�2) ; (1.61)

C = I +H +HT +O(�2) ; (1.62)

B = I �H �HT +O(�2) ; (1.63)
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U = I +
1

2

�
H +HT

�
+O(�2) ; (1.64)

V = I +
1

2

�
H +HT

�
+O(�2) ; (1.65)

R = I +
1

2

�
HT �H�+O(�2) : (1.66)

From the last three relations we infer

R �U =

�
I +

1

2

�
HT �H�+O(�2)

�
�
�
I +

1

2

�
H +HT

�
+O(�2)

�

= I +HT +O(�2) ; (1.67)

and

V �R =

�
I +

1

2

�
H +HT

�
+O(�2)

�
�
�
I +

1

2

�
HT �H�+O(�2)

�

= I +HT +O(�2) : (1.68)

Thus we can see that for small deformations the multiplicative decomposition of the defor-
mation gradient into orthogonal, symmetric and positive de�nite factors is approximated
by the additive decomposition of the displacement gradient into symmetric and skew-
symmetric parts:

F = R �U = V �R = I +HT =

= I +
1

2

�
H +HT

�
+

1

2

�
HT �H� =

= I + ~E + ~R (1.69)

The symmetric part of the displacement gradient,

~E =
1

2

�
H +HT

�
or ~EKL :=

1

2
(UK;L + UL;K) ; (1:70)

is called the linearized or in�nitesimal strain tensor, and the skew-symmetric part

~R :=
1

2

�
HT �H� or ~RKL :=

1

2
(UK;L � UL;K) ; (1:71)

is called the linearized or in�nitesimal rotation tensor. Summing up the last two equations
results in

HT = ~E + ~R or UK;L = ~EKL + ~RKL : (1:72)

Carrying this into (1.55), we obtain

E = ~E +
1

2

�
~E + ~R

�T � � ~E + ~R
�
: (1:73)

12



Now, it is clear that in order that E � ~E, not only strains ~E must be small, but rotations
~R must also be small so that products such as ~E

T � ~E, ~E
T � ~R, and ~R

T � ~R will be negligible
compared to ~E.

A similar procedure for the Eulerian strain tensor ekl gives

ekl = ~ekl � 1

2
(~emk + ~rmk) (~eml + ~rml) ; (1:74)

where the in�nitesimal strain tensor ~ekl and in�nitesimal rotation tensor ~rkl are de�ned by

~ekl :=
1

2
(uk;l + ul;k) ; ~rkl :=

1

2
(uk;l � ul;k) : (1:75)

The in�nitesimal strains are again symmetric, and the in�nitesimal rotations are skew-
symmetric, that is,

~ekl = ~elk ; ~rkl = �~rlk : (1:76)

When all displacement gradients uk;l are much small as compared to the unity, ekl � ~ekl.
In the linear theory (the in�nitesimal deformation theory) we assume that EKL = ~EKL and
ekl = ~ekl. In this case, (1.47) gives upon linearization

~EKL = ~ekl�kK�lL ; ~ekl = ~EKL�Kk�Ll ; (1:77)

where �Kk = �kK is now the Kronecker delta. Thus, in the linear theory the distinction
between the Lagrangian and Eulerian strain tensors disappears.

1.7 Length and angle changes

A geometrical meaning for strains and rotations is provided by considering the length and
angle changes as a result of the deformation. Referred to the same rectangular coordinates
XK , an in�nitesimal rectangular parallelepiped having edge vectors I1dX1, I2dX2, and
I3dX3 atX after deformation becomes a rectilinear parallelepiped at x with corresponding
edge vectors C1dX1, C2dX2, and C3dX3 (Figure 1.4). That is, a vector dX at X after
deformation becomes dx at x:

dX = IKdXK ; dx = CKdXK : (1:78)

If N and n are, respectively, unit vectors along dX and dx, we have

NK :=
dXK

jdXj =
dXK

dS
; nk :=

dxk
jdxj =

dxk
ds

; (1:79)

where dS and ds are length of dX and dx, respectively. The ratio ds=dS of the lengths of
dx and dX is called the stretch. This ratio may be expressed in terms of either N or n.
To indicate these dependence, we denote the stretch either by �(N ) or by �(n). They are,
of course, the same physical quantity expressed di�erently, that is �(N ) = �(n):
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Figure 1.4. Deformation of an in�nitesimal rectangular parallelepiped.

�(N ) :=
ds

dS
=
p
CKLNKNL ; �(n) :=

ds

dS
=

1p
cklnknl

: (1:80)

From this it is clear that the normal components of C and c in the directions of N and n
are, respectively, the squares and the inverse squares of stretches in these directions. This
point is clari�ed further if we select N , for example, along the X1�axis. Then N1 = 1,
N2 = N3 = 0, and (1.80)1 gives

�1 =
p
C11 =

p
1 + E11 : (1:81)

The extension E(N ) = e(n) is de�ned by

E(N ) := �(N ) � 1 =
ds� dS

dS
: (1:82)

Dividing (1.45) by dS2 and using (1.79)1 we have

ds2 � dS2

dS2
= 2EKLNKNL : (1:83)

Expressing the left-hand side of (1.83) by E(N ), we get the quadratic equation for E(N ):

E(N )

�
E(N ) + 2

�
� 2EKLNKNL = 0 : (1:84)
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From the two solutions of this equation, we choose physically admissible one:

E(N ) = �1 +
p
1 + 2EKLNKNL : (1:85)

Particularly, when N is taken along the X1�axis, this gives
E(1) = �1 +

p
1 + 2E11 : (1:86)

When the deformation is small, E11 � 1, by expanding (1.86) and neglecting the square
and higher powers of E11, we get

E11 � E(1) � ~E11 : (1:87)

Similar results are of course valid for E22 and E33, which indicates that the in�nitesimal
normal strains are approximately the extensions of the �bers along the coordinate axes when
the deformation is small.

The geometrical meaning of the shear strains E12, E13, and E23 is found by considering
the angles between two directions N (1) and N (2),

N (1) =
dX(1)

dS(1)
; N (2) =

dX (2)

dS(2)
: (1:88)

The angle � between these vectors in the undeformed body,

cos � =
dX (1)

dS(1)
� dX

(2)

dS(2)
; (1:89)

is changed by deformation to

cos � =
dx(1)

ds(1)
� dx

(2)

ds(2)
= CK �CL

dX(1)
K

ds(1)
dX(2)

L

ds(2)
; (1:90)

By (1.30) and (1.88) we further get

cos � = CKLN
(1)
K N (2)

L

dS(1)

ds(1)
dS(2)

ds(2)
=

CKLN
(1)
K N (2)

L�
E(N 1)

+ 1
��

E(N 2)
+ 1
� ; (1:91)

which can be rewritten in terms of the Lagrangian strain tensor as

cos � =
(2EKL + �KL)N

(1)
K N (2)

Lq
1 + 2EMNN

(1)
M N (1)

N

q
1 + 2ERSN

(2)
R N (2)

S

: (1:92)

When N (1) is taken along X1�axis and N (2) along X2�axis, (1.92) reduces to

cos �(12) =
2E12p

1 + 2E11
p
1 + 2E22

: (1:93)
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Figure 1.5. Deformation of an in�nitesimal rectangular parallelepiped.

When the components of the Lagrangian strain tensor are small as compared to unity, we
have approximately

2E12 � 2 ~E12 � cos �(12) : (1:94)

Hence, writing cos �(12) = sin�(12) � �(12), we have

2E12 � 2 ~E12 � �(12) : (1:95)

Similar results are valid for E13 and E23. This provides geometrical meaning for shear
strains. The in�nitesimal shear strains are approximately one half of the angle change
between the coordinate axes for small deformations.

1.8 Area and volume changes

Let us investigate the change of area and volume with deformation. We have already found
that (cf. Section 1.7) an in�nitesimal rectangular parallelepiped with edge vectors I1dX1,
I2dX2, and I3dX3 after deformation becomes a rectilinear parallelepiped with edge vectors
C1dX1, C2dX2, and C3dX3 (Figure 1.5). Thus the deformed area is given by

da3 = C1dX1 �C2dX2 = xk;1xl;2ik � ildX1dX2 ; (1:96)

or since dA3 = dX1dX2 and ik � il = �klmim, this reads

da3 = xk;1xl;2�klmimdA3 : (1:97)

But from Jacobi's identity (1.25) we have

jX3;m = �klmxk;1xl;2 ; (1:98)

16



so that
da3 = jX3;mdA3im : (1:99)

Analogous expressions are valid for da1 and da2. Thus

da = da1 + da2 + da3 = jXK;kdAKik ; (1:100)

whose kth component is
dak = jXK;kdAK : (1:101)

To calculate the deformed volume element, we take the scalar product of da3 with
C3dX3:

dv = da3 �C3dX3 = jX3;kik � (xm;3im) dA3dX3 = jX3;kxm;3�kmdV : (1:102)

Hence
dv = jdV : (1:103)

1.9 Change of the unit normal

To write the jump conditions in the reference frame, we need to �nd the relation between
unit exterior normals n = nkik and N = NKIK of the deformed surface s(t) and the
undeformed surface S, respectively. From (1.101) we have

dak = jXK;kdAK ; (1:104)

but

nk =
dakp
daldal

=
dak
da

; NK =
dAKp
dALdAL

=
dAK

dA
: (1:105)

Hence

nk = jXL;kNL

dA

da
: (1:106)

Using (1.104), we have

da =
p
daldal = j

p
XK;lXL;ldAKdAL = j

p
XK;lXL;lNKNLdA ; (1:107)

which gives
da

dA
= j
p
BKLNKNL = j

p
N �B �N ; (1:108)

where B is the Piola deformation tensor de�ned by (1.32)2. Substituting (1.108) into
(1.106), we get

nk =
XL;kNLp
BMNNMNN

or n =
N � F �1

p
N �B �N : (1:109)
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Let us express the foregoing expressions in the linear theory in which the displacement
gradient is su�ciently small that the linearization is justi�ed. Using the linearized form
(1.63) of the Piola deformation tensor B, we can write

1p
N �B �N =

1p
1 � 2N �H �N = 1 +N �H �N +O

�
�2
�
:

Employing this and the linearized forms (1.60) and (1.61) for the spatial deformation
gradient F�1 and the jacobian j, the unit normal n to the deformed surface s(t) and the
ratio dA=da may, within the framework of linear approximation, be written as

n = (1 +N �H �N )N �H �N +O
�
�2
�
; (1.110)

dA

da
= 1 +N �H �N � trH +O

�
�2
�
: (1.111)
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2. KINEMATICS

2.1 Material and spatial time derivatives

If we focus attention on a speci�c particle XP having the material position vector XP ,
(1.3) takes the form

xP = �(XP ; t) (2:1)

and describes the path or trajectory of that particle as a function of time. The velocity vP

of the particle along this its path is de�ned as the time rate of change of position, or

V P :=
dxP

dt
=

�
@�

@t

�����
X=XP

; (2:2)

where the subscript X accompanying a vertical bar indicates that X is held constant
(equal to XP ) in the di�erentiation of �. In an obvious generalization, we may de�ne the
velocity of the total body as the derivative

V (X; t) :=
dx

dt
=

�
@�

@t

�����
X

: (2:3)

This is the Lagrangian representation of velocity and the time rate of change with respect
to a moving particle is called the material derivative. Similarly, the material derivative of
v de�nes the Lagrangian representation of acceleration,

A(X; t) :=
dv

dt
=

�
@V

@t

�����
X

=

�
@2�(X; t)

@2t

�����
X

: (2:4)

By using (1.48) we may also write

V (X; t) =

�
@U

@t

�����
X

; A(X; t) =

�
@2U

@2t

�����
X

: (2:5)

In the Lagrangian representation, the material particle with a given velocity or acceler-
ation is identi�able, whereas, in the Eulerian description, the velocity and acceleration at
time t at a spatial point are known, but the particle occupying this point is not known, so
that, �(X; t) cannot be speci�ed. This excludes the knowledge of the material derivative
of �.

Since the fundamental laws of continuum dynamics involve the acceleration of particles
and since the Lagrangian formulation of velocity may not be available, the acceleration
must be calculated from the Eulerian formulation of velocity. To accomplish this, only
the existence of the unknown trajectories, x = �(X; t), must be assumed. Substitution of
(1.3)2 for X in (2.3), we have

v(x; t) = V (��1(x; t); t) ; (2:6)
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which gives the velocity �eld at each spatial point x at time t with no speci�cation of its
relation to the material point X. This is the Eulerian representation of velocity.

Based on the same assumption of the existence of the trajectories x = �(X; t), the
Eulerian representation of velocity (2.6) may be considered in the form v = v(x(X; t); t).
By chain rule of calculus, we get

dv

dt

����
X

=
@v

@t

����
x
+ v � gradv ; (2:7)

where di�erentiation in the grad-operator is taken with respect to the spatial variables.
This is the desired equation for the Eulerian representation of acceleration which is ex-
pressed in terms of the Eulerian representation of velocity,

a(x; t) =
@v

@t

����
x
+ v � gradv : (2:8)

In this equation, the �rst term on the right-hand side gives the time rate of change of
velocity at a �xed position x, known as the local rate of change or spatial time derivatives;
the second term results from the particles changing position in space and is referred to as
the convective term.

The material derivative of any other �eld quantity can be calculated in the same way if
its Lagrangian or Eulerian representation is known. This suggests to introduce thematerial
derivative operator

D

Dt
:=

d

dt

����
X

=

8>><
>>:

@
@t

���
X

for a �eld in the Lagrangian representation ;

@
@t

���
x
+ v � grad for a �eld in the Eulerian representation ;

(2:9)
which can be applied to any �eld quantity given in the Lagrangian or Eulerian representa-
tion.

2.2 Reynolds's transport theorem

The material derivative of surface and volume integrals are required in the formulation of
fundamental laws of continuum mechanics. To provide necessary apparatus we now give

Fundamental Lemma. The material derivative of the deformation gradients is given
by

D

Dt
(xk;K) = vk;lxl;K : (2:10)

The proof is immediate, for

D

Dt
(xk;K) =

D

Dt

�
@xk
@XK

�
=

@

@XK

�
Dxk
Dt

�
= vk;K = vk;lxl;K ;

since in the operation D=Dt we have XK �xed so that D=Dt and @=@XK commute.
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A corollary of this lemma is

D

Dt
(XK;k) = �vl;kXK;l : (2:11)

To prove it, we take the material derivative of xl;LXL;k = �kl. Hence

D

Dt
(xl;L)XL;k + xl;L

D

Dt
(XL;k) = 0 :

Using (2.10), we �nd that this expression reads

xl;L
D

Dt
(XL;k) = �vl;mxm;LXL;k = �vl;k :

Multiplying both sides by XK;l, we obtain (2.11).
Lemma 1: The material derivative of the Lagrangian strain tensor is given by

D

Dt
(EKL) =

1

2

D

Dt
(CKL) = dklxk;Kxl;L ; (2:12)

where

dkl :=
1

2
(vk;l + vl;k) or d :=

1

2

�
gradv + (gradv)T

�
(2:13)

is the symmetric part of gradv, often called the strain-rate tensor. To show this, we have

D

Dt
(CKL) =

D

Dt
(xk;Kxk;L) = vk;lxl;Kxk;L+xk;Kvk;lxl;L = (vk;l + vl;k)xk;Kxl;L = 2dklxk;Kxl;L :

Lemma 2: The material derivative of the jacobian is given by

Dj

Dt
= j divv : (2:14)

To show this, we have

Dj

Dt
=

D

Dt
(detxk;K) =

@j

@xk;K

D(xk;K)

Dt
=

@j

@xk;K
vk;lxl;K ;

Using (1.25), this gives (2.14).
Theorem: The material derivative of a volume integral of any scalar or vector �eld �

over the spatial volume v(t) is given by

D

Dt

Z
v(t)

�dv =

Z
v(t)

�
D�

Dt
+ �divv

�
dv : (2:15)

Proof: Under the assumption of existence of the mapping (1.3), we �rstly transform
the integral over the spatial volume to an integral over the material volume V . By (2.14),
we have

D

Dt

Z
v(t)

�dv =
D

Dt

Z
V

�jdV ;
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where �(X; t) = �(x(X; t); t). Since V is a �xed volume in the Lagrangian con�guration,
the di�erentiationD=Dt and the integration over V commute and the di�erentiationD=Dt
can be performed inside the integral sign,

D

Dt

Z
V

�jdV =

Z
V

D

Dt
(�j) dV =

Z
V

�
D�

Dt
j + �

Dj

Dt

�
dV =

Z
V

�
D�

Dt
+ �divv

�
jdV :

By converting this back to the spatial formulation by (2.14), we prove (2.15). Equation
(2.15) is often spoken of as the Reynolds transport theorem.

This theorem may be expressed in a di�erent form. To do it, we calculate the material
derivative of a �eld �,

D�

Dt
=

@�

@t
+ v � grad� ; (2:16)

and substitute this back into (2.15). With the product rule

�divv + v � grad� = div (v�) (2:17)

which is valid for a scalar or vector �eld �, we then arrive

D

Dt

Z
v(t)

�dv =

Z
v(t)

�
@�

@t
+ div (v�)

�
dv :

Arranging the second term on the right-hand side according to the generalized Gauss's
theorem Z

v

divA dv =

I
s

n �A da ; (2:18)

where A is a second-order tensor-valued function continuously di�erentiable in v, s is the
surface bounding volume v and n is the outward unit normal to s, we get an equivalent
form of the Reynolds transport theorem

D

Dt

Z
v(t)

�dv =

Z
v(t)

@�

@t
dv +

I
s(t)

� (n � v) da ; (2:19)

where both � and v are again required to be continuously di�erentiable in v.

2.3 Modi�ed Reynolds's transport theorem

The time rate of integral over a region containing a discontinuity surface is common oc-
currence in the study of geophysical phenomena. We give below an expression modifying
the Reynolds transport theorem for the case when a volume is intersected by a moving
discontinuity surface.

Consider a material volume v which is intersected by a discontinuity surface �(t) across
which a tensor-valued function A undergoes a jump (Figure 2.1). The surface �(t) divides
the material volume v into two parts, namely v+ on the side of the normal n and v� on
the other side. Then the generalized Gauss theorem (2.18) is to be modi�ed as
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Figure 2.1. Discontinuity surface.

Z
v��

divA dv =

I
s��

n �A da�
Z
�

n � [A]+
�
da : (2:20)

The volume integral over v � � means the volume v of the body excluding the material
points located on the discontinuity surface �. Similarly, the integral over the surface s��
excludes the line of intersection of � with s, that is,

v � � := v+ + v� ; s� � := s+ + s� : (2:21)

The brackets indicate the jump of the enclosed quantity across �(t), e.g.,

[A]+
�
:= A+ �A� : (2:22)

To prove (2.20) we apply the Gauss theorem (2.18) to the two volumes v+ and v�

bounded by s+ + �+ and s� + ��, respectively. Hence
Z
v+

divA dv =

Z
s+
n �A da+

Z
�+
n+ �A+ da ;

Z
v�

divA dv =

Z
s�
n �A da+

Z
��
n� �A� da ;

where n+ and n� are the exterior normals to �+ and ��, respectively. Upon adding these
two equations, we get

Z
v++v�

divA dv =

I
s++s�

n �A da+

Z
�+
n+ �A+ da+

Z
��
n� �A� da :
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But we have
n+ = �n� = �n ;

and letting �+ and �� approach �, so that
Z
�+
n+ �A+ da+

Z
��
n� �A� da =

Z
�

n � �A� �A+
�
da = �

Z
�

n � [A]+
�
da

The Reynolds transport theorem (2.15) has also to be modi�ed once the discontinuity
surface �(t) moves with velocity � which di�ers, in general, from the material velocity v.
The modi�cation of (2.15) reads

D

Dt

Z
v��

�dv =

Z
v��

�
D�

Dt
+ �divv

�
dv +

Z
�

[�(v � �)]+
�
� n da : (2:23)

Both � and v are required to be continuously di�erentiable in v � �. To prove (2.23) we
apply (2.19) to the two volumes v+ and v� bounded by s++�+ and s�+��, respectively.
Hence

D

Dt

Z
v+
�dv =

Z
v+

@�

@t
dv +

Z
s+
� (n � v) da+

Z
�+

� (n � �) da ;

D

Dt

Z
v�
�dv =

Z
v�

@�

@t
dv +

Z
s�
� (n � v) da+

Z
��

� (n � �) da :

Upon adding these two equations, letting �+ and �� approach � and realizing that n+ =
�n� = �n, we obtain

D

Dt

Z
v++v�

�dv =

Z
v++v�

@�

@t
dv +

I
s++s�

� (n � v) da�
Z
�

[��]+
�
� n da :

Using the Gauss theorem (2.20) for A = v� to replace the second term on the right-hand
side, we get

D

Dt

Z
v++v�

�dv =

Z
v++v�

�
@�

@t
+ div (v�)

�
dv +

Z
�

[�(v � �)]+
�
� n da :

To complete the proof of modi�ed Reynolds's transport theorem (2.23), the �rst term on
the right-hand side is to be arranged by making use of (2.16) and (2.17).
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3. STRESS

3.1 Body and surface forces, mass density

The forces acting on a continuum or between portions of it divide into long-range forces
and short-range forces.

Long-range forces comprise gravitational, electromagnetic and inertial forces. These
forces decrease very gradually with an increase in distance between the interacting particles.
As a result, long-range forces act uniformly on all matter contained in a su�ciently small
volume, so that, they are proportional to its size. In continuum mechanics, long-range
forces are therefore called body or volume forces.

Short-range forces comprise several types of molecular forces. Their characteristic fea-
ture is that they decrease extremely abruptly with an increase in distance between the
interacting particles. Hence, they are appreciable only when this distance does not exceed
molecular dimensions. A consequence is that, if the matter inside some volume is acted on
by short-range forces originating from interactions with matter outside this volume, these
forces can only act on a thin layer immediately below its surface. In continuum mechanics,
short-range forces are therefore called surface forces; they are speci�ed more closely by
constitutive equations (Chapter 5).

In the following, we assume that volume and surface forces arise due to interactions
that are equal, opposite and collinear (so-called the strong law of action and reaction). On
this assumption, volume and surface couple stresses cannot arise.

In continuum mechanics, with each body there is associated a measure called mass. It
is non-negative and additive, and it is invariant under the motion. If the mass is absolutely
continuous in the space variables, then there exists a density % called the mass density.
The total mass of the body is then determined by

m =

Z
v

%dv : (3:1)

If the mass is not continuous throughout volume v, then instead of (3.1) we write

m =

Z
v1

%dv +
X
�

m� ; (3:2)

where the summation is taken over all discrete masses contained in the body. We shall be
dealing with a continuous mass medium in which (3.1) is valid, which implies that m! 0
as v ! 0. We therefore have

0 � % <1 : (3:3)

Let f be the body force per unit mass. The resultant body force acting on the body
currently occupying some �nite volume v is thenZ

v

%fdv :
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3.2 Cauchy traction principle

We consider a material body b(t) which is subject to body forces f and surface forces g.
Let p be an interior point of b(t) and imagine a plane surface s� passing through point p
(sometimes referred to as a cutting plane) so as to partition the body into two portions,
designated I and II (Figure 3.1). Point p is lying in the small element of area �s� of the
cutting plane, which is de�ned by the unit normal n pointing in the direction from Portion
I into Portion II, as shown in Figure 3.1. The internal forces being transmitted across
the cutting plane due to the action of Portion II upon Portion I will give rise to a force
distribution on �s� equivalent to a resultant surface force �g as is also shown in Figure
3.1. (For simplicity, body forces and surface forces acting on the body as a whole are not

drawn in Figure 3.1.) Notice that �g are not
necessarily in the direction of the unit nor-
mal vector n. The Cauchy traction principle
postulates that the limit when the area �s�

shrinks to zero, with p remaining an interior
point, exists and is

t(n) = lim
�s�!0

�g

�s�
: (3:4)

Obviously, this limit is meaningful only if �s�

degenerates not into a curve but into a point
p. The vector t(n) is called the Cauchy stress
vector or the Cauchy traction vector (force per

unit area). It is important to note that, in general, t(n) depends not only on the position of
p on s but also the orientation of surface s, i.e., on its external normal n. This dependence
is therefore indicated by the subscript n. Thus, for the in�nity of cutting planes imaginable
through point p, each identi�ed by a speci�c n, there is also an in�nity of associated stress
vectors t(n) for a given loading of the body.

�p

�s�

s�

n

�g

I

II

b(t)

Figure 3.1.
Surface force on surface element �s�.

We incidentally mention that a continuous distribution of surface forces acting across
some surface is, in general, equivalent to a resultant force and a resultant couple. In (3.4)
we have made the assumption that, in the limit at p, the couple per unit area vanishes and
therefore there is no remaining concentrated moment, or couple stress as it is called. For a
discussion of couple stresses, the reader should referred to Eringen, 1967.

To determine the dependence of the stress vector on the exterior normal, we next apply
the principle of balance of linear momentum to a small tetrahedron of volume�v having its
vertex at p, three coordinate surfaces �ak, and the base �a on s with an oriented normal
n (Figure 3.2). The stress vector 1 on the coordinate surface xk = const: is denoted by
�tk.

1Since the exterior normal of a coordinate surface xk = const: is in the direction of �xk, without loss
in generality, we denote the stress vector acting on this coordinate surface by �tk rather than tk.
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p

x1

x2

x3

�t3�a3

�t2�a2

�t1�a1

tn�a
n

%f�v

h

Figure 3.2. Equilibrium of an in�nitesimal tetrahedron.

We now apply the equation of balance of linear momentum (Sect.4.1) to this tetrahe-
dron. Z

�v
%fdv �

Z
�ak

tkdak +

Z
�a
t(n)da =

D

Dt

Z
�v

%vdv :

An estimate of the surface and volume integrals may be made by use of the mean value
theorem:

%�f��v � t�k�ak + t�(n)�a =
D

Dt
(%�v��v) ; (3:5)

where %�, f �, and v� are, respectively, the values of %, f , and v at some interior points of
the tetrahedron and t�(n) and t

�

k are the values of t(n) and tk on the surface �a and on
coordinate surfaces �ak. The volume of the tetrahedron is given by

�v =
1

3
h�a ; (3:6)

where h is the perpendicular distance from point p to the base �a. Moreover, the area
vector �a is equal to the sum of coordinate area vectors, i.e.,

�a = n�a = �akik : (3:7)

Thus
�ak = nk�a : (3:8)
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Inserting (3.6) and (3.8) into (3.5) and canceling the common factor �a, we obtain

1

3
%�f �h� t�knk + t�(n) =

1

3

D

Dt
(%�v�h) : (3:9)

Now, letting the tetrahedron shrink to point p by taking the limit h ! 0 and noting
that in this limiting process the starred quantities take on the actual values of those same
quantities at point p, we have

t(n) = tknk ; (3:10)

which is the Cauchy stress formula. Equation (3.10) allows us to determine the Cauchy
stress vector at some point acting across an arbitrarily inclined plane, if the Cauchy stress
vectors acting across the three coordinate surfaces through that point are known.

The stress vectors tk are, by de�nition, independent of n. From (3.10) it therefore
follows that

t(�n) = �t(n) : (3:11)

De�nition (Cauchy stress tensor). The Cauchy stress tkl is the lth components of the
stress vector tk acting on the positive side of the kth coordinate surface:

tk = tklil or tkl = tk � il : (3:12)

The �rst subscript in tkl indicates the coordinate surface xk = const: on which the stress
vector tk acts, and the second subscript the direction of the component of tk. For example,
t23 is the x3-components of the stress vector t2 acting on the coordinate surface x2 = const:.
Now, if the exterior normal of x2 = const: points in the positive direction of the x2-axis,
t23 points in the positive direction of the x3-axis. If the exterior normal of x2 = const: is in
the negative direction of the x2-axis, t23 is directed in the negative direction of the x3-axis.
The positive stress components on the faces of a parallelepiped built on coordinate surfaces
are shown on Figure 3.3. The components t11, t22 and t23 are called normal stresses and
the mixed components t12, t13, etc. are called shear stresses. The nine components tkl of
the Cauchy stress tensor t may be arranged in a matrix form

t =

0
@ t11 t12 t13

t21 t22 t23
t31 t32 t33

1
A : (3:13)

Considering (3.12), the Cauchy stress formula (3.10) reads

t(n) = n � t ; (3:14)

saying that the Cauchy stress vector acting on any plane through a point is fully charac-
terized as a linear function of the stress tensor at the point.
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Figure 3.3. Stress tensor.
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4. FUNDAMENTAL BALANCE LAWS

4.1 Global balance laws

In continuum mechanics the following �ve laws are postulated irrespective of material con-
stitution and geometry. They are valid for all bodies subject to thermomechanical e�ects.
The domain of applicability of these laws is restricted by the relativistic speeds (special
relativity) and dimensions (general relativity) and microscopic and quantum-mechanical
phenomena.

Fundamental Axiom 1 (Conservation of Mass). The total mass of a body is un-
changed with motion.

This axiom assumes that the mass production and supply is zero. It thus states that
the reference (initial) total mass of the body is the same as the total mass of the body at
any other time, i.e., Z

V

%0 dV =

Z
v(t)

% dv ; (4:1)

where V and v(t) is the reference and the current volume of the body, %0(X) is the mass
density of the body in the reference con�guration, %(x; t) is the mass density of the body
in a current con�guration. Using the transformation law dv = jdV , we may write this asZ

V

�
%0 �%j

�
dV = 0 ; (4:2)

where
%(X; t) := %(x(X; t); t) : (4:3)

Alternatively, we may take the material derivative of (4.1). Thus,

D

Dt

Z
v(t)

% dv = 0 : (4:4)

Either expression (4.2) or (4.4) expresses the law of conservation of mass.

Fundamental Axiom 2 (Balance of Linear Momentum). The time rate of change of
the total linear momentum of a body is equal to the resultant force acting on the body.

Let a body having a current volume v(t) and bounding surface s(t) with exterior unit
normal n be subject to surface traction t(n) and body force f (body force per unit mass
of the body). The resultant force acting on the body isZ

s(t)
t(n) da+

Z
v(t)

%f dv :

In addition, let the body be in motion under the velocity �eld v(x; t). The linear momen-
tum of the body is de�ned by the vector

D

Dt

Z
v(t)

%v dv :
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Thus the balance of linear momentum reads

D

Dt

Z
v(t)

%v dv =

Z
s(t)

t(n) da+

Z
v(t)

%f dv : (4:5)

Fundamental Axiom 3 (Balance of Angular Momentum). The time rate of change of
the total angular momentum of a body is equal to the resultant moment of all forces acting
on the body.

Mathematically,

D

Dt

Z
v(t)

%x� v dv =
Z
s(t)

x� t(n) da+

Z
v(t)

%x� f dv ; (4:6)

where the left-hand side is the time rate of change of the total angular momentum about
the origin, which is also frequently called the moment of momentum. On the right-hand
side the surface integral is the moment of the surface tractions about the origin, and the
volume integral is the total moment of body forces about the origin.

Fundamental Axiom 4 (Conservation of Energy). The time rate of change of the
sum of kinetic energy K and internal energy E is equal to the sum of the rate of work W
of the surface and body forces and all other energies U� that enter and leave body per unit
time.

Mathematically,
D

Dt
(K + E) =W +

X
�

U� : (4:7)

The total kinetic energy of the body is given by

K =
1

2

Z
v(t)

%v � v dv : (4:8)

In continuum mechanics the existence of the internal energy density " is postulated:

E =

Z
v(t)

%" dv : (4:9)

The mechanical power, or rate of work of the surface traction t(n) and body forces f is
given by

W =

Z
s(t)

t(n) � v da+
Z
v(t)

%f � v dv : (4:10)

Other energies U� (� = 1; 2; :::; n) that enter and leave the body may be of thermal,
electromagnetic, chemical, or some other origin. In this text, we consider that the energy
transfer in continuum is thermo-mechanical and thus only due to work or heat. The heat
energy consists of the heat ux per unit area q that enters or leaves through the surface of
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the body and the heat source h per unit mass produced by internal sources. Thus we set
U� = 0 except for

U1 := L =

Z
s(t)

q � n da+

Z
v(t)

%h dv ; (4:11)

where the unit normal n is directed outward from the surface of the body. Thus (4.7)
reads

D

Dt

Z
v(t)

(%"+
1

2
%v � v) dv =

Z
s(t)

�
t(n) � v + q � n� da+

Z
v(t)

(%f � v + %h) dv ; (4:12)

which is the statement of the �rst law of thermodynamics.

Fundamental Axiom 5 (Entropy inequality). The time rate of change of the total
entropy H is never less than the sum of the inux of entropy s through the surface of the
body and the entropy B supplied by the body forces. This law is postulated to hold for all
independent processes.

Mathematically,

� :=
DH

Dt
�B �

Z
s(t)

s �n da � 0 ; (4:13)

where � so de�ned is the total entropy production. In classical continuum mechanics the
entropy density � and entropy source b, per unit mass, are postulated to exist such that

H =

Z
v(t)

%� dv ; B =

Z
v(t)

%b dv :

Moreover, we shall be dealing only with simple thermodynamic processes for which the
entropy ux s and entropy source b are taken as

s =
q

�
; b =

h

�
: (4:14)

where the scalar � is called the absolute temperature. It is subject to

� > 0 ; inf � = 0 ; (4:15)

that is, the temperature is absolute, or it is always positive. Thus, for a simple thermody-
namic process the entropy inequality (4.13) reads

D

Dt

Z
v(t)

%� dv �
Z
s(t)

1

�
q � n da�

Z
v(t)

%h

�
dv � 0 : (4:16)

The foregoing �ve laws are postulated to hold for all bodies irrespective of their geome-
tries and constitutions. To obtain local equations, further restrictions are necessary, which
are made in the next section.

4.2 Local balance laws

32



4.2.1 Continuity equation

We now apply the Reynolds transport theorem (2.23) to the law of conservation of mass
(4.4). Considering � = % in (2.23), the law of conservation of mass (4.4) reads

Z
v(t)��(t)

�
D%

Dt
+ %divv

�
dv +

Z
�(t)

[%(v � �)]+
�
� n da = 0 : (4:17)

We now assume that the density %(x; t) and v are continuously di�erentiable functions
of the spatial variables xk and time t in v(t) � �(t) which implies that the integrand
of the volume integral in (4.17) is continuous in xk and t. We also assume that the
jump [%(v � �)]+

�
on the discontinuity surface �(t) is a continuous function of x and t.

Moreover, we postulate that all global balance laws are valid for every part of the body
and the discontinuity surface. Applied to (4.17) this implies that integrands of each of the
integral must vanish identically. 2 Thus

D%

Dt
+ %divv = 0 in v(t)� �(t) ; (4.18)

[%(v � �)]+
�
�n = 0 on �(t) : (4.19)

These are the equations of local conservation of mass and the jump condition in Eulerian
form. Equation (4.18) is often called the continuity equation. A di�erent form of (4.18) is
obtained by rewriting it as

@%

@t
+ v � grad % + %divv = 0 ;

or
@%

@t
+ div (%v) = 0 in v(t)� �(t) : (4:20)

The Lagrangian form of continuity equation can be derived from (4.2):

%0 = %j in V ; (4:21)

which is equivalent to
D

Dt
(%j) = 0 in V : (4:22)

Let us express the Lagrangian form of the continuity equation (4.21) in the linear theory
(the in�nitesimal deformation theory). Expressing x(X,t) in terms of displacement vector
on the right-hand side of (4.3) and expanding the result at the point X, we get

%(X; t) = %(X + u; t) = %(X ; t) + u � grad %j(X; t) ; (4:23)

2For nonlocal continuum theories this postulate is revoked, and only the global balance laws (valid for
the entire body) are considered to be valid.
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where the second and higher order terms of the Taylor series expansion have been neglected.
Due to existence of the mapping (1.1) and eqn.(4.21), the second term on the right-hand
side of (4.23) can, within the accuracy of the linear theory, be approximated as

u � grad %j(X; t) = u �Grad%��(X; t) = u �Grad %0(X) : (4:24)

Substituting (4.23) and (4.24) into (4.21) and considering that j � 1 + divu in the linear
theory, the linearized form of (4.21) reads

%(X; t) = %0(X)� div [%0(X)u(X; t)] : (4:25)

4.2.2 Equation of motion

The equation of global balance of linear momentum (4.5) now reads

D

Dt

Z
v(t)��(t)

%v dv =

Z
s(t)��(t)

t(n) da+

Z
v(t)��(t)

%f dv : (4:26)

By substituting for the Cauchy stress vector t(n) from (3.14) and using the generalized
Gauss's theorem (2.20), we obtain

D

Dt

Z
v(t)��(t)

%v dv =

Z
v(t)��(t)

(div t+ %f ) dv +

Z
�(t)

n � [t]+
�
da : (4:27)

Using Reynolds's transport teorem (2.23) with � = %v, we obtain

Z
v(t)��(t)

�
D(%v)

Dt
+ %v divv � div t� %f

�
dv +

Z
�(t)

�
%v(v � �)� tT�+

�
� n da = 0 :

(4:28)
This is postulated to be valid for all parts of the body. Thus the integrands vanish sepa-
rately. Upon using (4.18), this is simpli�ed to

div t+ %f = %
Dv

Dt
in v(t)� �(t) ; (4.29)�

%v(v � �)� tT �+
�
� n = 0 on �(t) : (4.30)

Equation (4.29) is known as Cauchy's equations of motion in Eulerian form expressing
the local balance of linear momentum, and (4.30) is the associated jump condition on the
singular surface �.

Alternatively, in view of the de�nition of div t, div t = tkl;kil, and of the di�erentiation
of (3.12) with respect to xk, we observe that

div t = tk;k : (4:31)
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Thus the Cauchy equation of motion (4.29) can be expressed in terms of the stress vectors
tk as

tk;k + %f = %
Dv

Dt
in v(t)� �(t) : (4:32)

4.2.3 Symmetry of the Cauchy stress tensor

The angular momentum of the surface tractions about the origin occurring in the global
law of balance of the angular momentum (4.6), can be rewritten by using the Cauchy stress
formula (3.14), the tensor identity

v � (w �A) = �w � (A � v) ; (4:33)

where v, w are vectors, A is a second-order tensor, and the generalized Gauss theorem
(2.20), to the form

Z
s(t)��(t)

x� t(n) da = �
Z
v(t)��(t)

div (t� x) dv �
Z
�(t)

n � [t� x]+
�
da : (4:34)

By making use of the two tensor identities,

div (t� v) = div t� v + tT
:� gradv ; (4:35)

gradx = I ; (4:36)

where the superscript T at tensor t stands for transposition,
:� denotes the dot-cross

product of the 2nd order tensors, and I is the second-order identity tensor, we further
have Z

v(t)��(t)
div (t� x) dv =

Z
v(t)��(t)

�
div t� x+ tT

:� I
�
dv :

Upon carrying this and (4.34) into the equation of balance of the angular momentum (4.6)
and using the Reynolds transport theorem (2.23) with � = x� %v, we obtain

Z
v(t)��(t)

�
D(%x � v)

Dt
+ (%x� v) divv + div t� x+ tT

:� I � %x� f
�
dv+

+

Z
�(t)

[x� %v(v � �)]+
�
� n da+

Z
�(t)

n � [t� x]+
�
da = 0 ;

which can be arranged to the form

Z
v(t)��(t)

�
(x� v)

�
D%

Dt
+ %divv

�
+ %

Dx

Dt
� v + x�

�
%
Dv

Dt
� div t� %f

�
+ tT

:� I

�
dv+

+

Z
�(t)

x� �%v(v � �)� tT�+
�
� n da = 0 : (4:37)

35



Considering
Dx

Dt
� v = v � v = 0

and using the local laws of conservation of mass (4.18), the balance of linear momentum
(4.29), and the associated jump condition (4.30), we get

Z
v(t)��(t)

tT
:� I dv = 0 : (4:38)

Again, postulating that this to be valid for all parts of v(t) � �(t), the integrand must
vanish, so that,

tT
:� I = 0 or tT = t in v(t)� �(t) : (4:39)

Thus the necessary and su�cient condition for the satisfaction of the local balance of an-
gular momentum is the symmetry of the Cauchy stress tensor t. We have seen that the
associated jump condition for the angular momentum is satis�ed identically.

Note that in formulating the angular principle by (4.6) we have assumed that no body
nor surface couples act on the body. If any such concentrated moments do act, the material
is said to be a polar material and the symmetry property of t no longer holds. But this is
a rather specialized situation and we shall not consider it here.

4.2.4 Energy equation

The same program can be carried out for the equation of energy balance (4.12). The
surface integral occurring on the right-hand side of the equation of energy balance can
be rewritten by using the Cauchy stress formula (3.14) and then can be converted to the
volume integral by the Gauss theorem for a vector to the form
Z
s(t)��(t)

�
t(n) � v + q � n� da =

Z
v(t)��(t)

(div (t � v) + divq) dv +

Z
�(t)

[t � v + q]+
�
� n da :

(4:40)
The divergence of vector t � v will be arranged by making use of the identity:

div (t � v) = div t � v + tT :: gradv ; (4:41)

where :: stands for the double-dot product of tensors. The left-hand side of the equation of
energy balance (4.12) can be arranged by Reynolds's transport theorem (2.23) as

D

Dt

Z
v(t)��(t)

(%"+
1

2
%v � v) dv =

Z
v(t)��(t)

�
D

Dt
(%"+

1

2
%v � v) + (%"+

1

2
%v � v)divv

�
dv+

+

Z
�(t)

�
(%"+

1

2
%v � v)(v � �)

�+
�

� n da =
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=

Z
v(t)��(t)

�
("+

1

2
v � v)

�
D%

Dt
+ %divv

�
+ %

D"

Dt
+ %

Dv

Dt
� v
�
dv+

+

Z
�(t)

�
(%"+

1

2
%v � v)(v � �)

�+
�

� n da ;

which, by the law of mass conservation (4.18), reduces to

D

Dt

Z
v(t)��(t)

(%"+
1

2
%v � v) dv =

Z
v(t)��(t)

�
%
D"

Dt
+ %

Dv

Dt
� v
�
dv+

+

Z
�(t)

�
(%"+

1

2
%v � v)(v � �)

�+
�

� n da : (4:42)

In view of (4.40){(4.42), the equation of motion (4.29), the symmetry of the Cauchy stress
tensor, and upon setting the integrand of the result equal to zero, we obtain

%
D"

Dt
= t :: gradv + divq + %h in v(t)� �(t) ; (4.43)�

(%"+
1

2
%v � v)(v � �)� t � v � q

�+
�

� n = 0 on �(t) : (4.44)

In view of the symmetry of the Cauchy stress tensor t, we further have

%
D"

Dt
= t :: d+ divq + %h in v(t)� �(t) ; (4:45)

where d is the strain-rate tensor introduced by (2.13). Equation (4.45) is the energy
equation for a thermomechanical continuum and (4.44) is the associated jump condition
on the singular surface �.

4.2.5 Entropy inequality

The same program can be applied to the global law of entropy to carry out it to the local
form. Using again the Reynolds transport theorem, the Cauchy stress formula and the
Gauss theorem, and assuming that the global law of entropy (4.13) is valid for any part of
the body, we get the local production of entropy

%
D�

Dt
� div s� %b � 0 in v(t)� �(t) ; (4.46)

[%�(v � �)� s]+
�
� n � 0 on �(t) : (4.47)

For a simple thermodynamical process, the entropy inux s and entropy source b can be
taken according to (4.14), and heat source h can be eliminated between (4.45) and (4.46).
The entropy inequality then takes the form

%

�
D�

Dt
� 1

�

D"

Dt

�
+

1

�
t :: d +

1

�2
grad � � q � 0 ; (4:48)
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which is known as the Clausius-Duhem inequality.

4.2.6 R�esum�e of local balance laws

For a quick reference, we collect all local balance laws.

(i) Conservation of mass

@%

@t
+ div (%v) = 0 in v(t)� �(t) ; (4.49)

[%(v � �)]+
�
� n = 0 on �(t) : (4.50)

(ii) Balance of linear momentum

div t+ %f = %
Dv

Dt
in v(t)� �(t) ; (4.51)

[%v(v � �)� t]+
�
� n = 0 on �(t) : (4.52)

(iii) Balance of angular momentum

t = tT in v(t)� �(t) : (4:53)

(iv) Conservation of energy

%
D"

Dt
= t :: d+ divq + %h in v(t)� �(t) ; (4.54)�

(%"+
1

2
%v � v)(v � �)� t � v � q

�+
�

� n = 0 on �(t) : (4.55)

(v) Entropy inequality

%
D�

Dt
� div s� %b � 0 in v(t)� �(t) ; (4.56)

[%�(v � �)� s]+
�
� n � 0 on �(t) : (4.57)

4.3 Jump conditions in special cases

If there is a moving discontinuity surface �(t) sweeping the body with a velocity � in the
direction of the unit normal n of �(t), then the jump conditions (4.50), (4.52) (4.55) and
(4.57) must be satis�ed on the surface �(t). Some of these jump conditions will now be
applied to two special cases:

(i) The discontinuity surface is a material surface. In this case, � = v, (4.50) is
satis�ed identically, (4.52) and (4.55) reduce to

[t]+
�
� n = 0 ; (4.58)

[t � v + q]+
�
� n = 0 : (4.59)
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Hence, on a material interface between two media the surface traction t �n is continuous,
and the jump on the energy of tractions across this interface is balanced with that of the
normal component of the heat vector.

A chemical interface of two media is usually taken as the material interface with � = v
across which the material velocity is continuous [v]+

�
= 0. Condition (4.59) is then further

reduced by (4.58) to
[q]+

�
� n = 0 ; (4:60)

which states the continuity in the normal component of the heat vector across �(t).
A free-slip interface of two materials is the material interface across which the motion

from one of its side runs without friction. This means that the shear stresses of the Cauchy
stress tensor t are equal to zero from one of interface side (e.g., with superscript `�'),

n� � t� � �I � n�n�
�
= 0 or n� � t� =

�
n� � t� � n�

�
n� : (4:61)

Carrying this into (4.58) and considering that n = n� = �n+ across �(t), we get

[n � t � n]+
�
= 0 ; (4:62)

which states the continuity of the normal stress of tensor t across discontinuity surface
�(t).

(ii) The discontinuity surface coincides with the surface of the body. In this
case %+ = 0, v� = �. Again (4.50) gives an identity and the others reduce to

[t]+
�
� n = 0 ; (4.63)

[t � v + q]+
�
� n = 0 ; (4.64)

where t+ � n is interpreted as the external surface load and t+ � v+ as the energy of this
load. If the external surface load is equal to zero, t+ = 0, then t� � n = 0, and the �rst
term on the left of (4.64) is equal to zero. Hence, we obtain the boundary condition

[q]+
�
� n = 0 (4:65)

involving the heat alone.

4.4 Equation of motion in the reference frame

Any surface forces existing in a continuum are, in general, associated with deformation.
When introducing the concept of traction, it is thus natural to reckon the forces acting in
the deformed state across some surface per unit area of this surface. This view has led to the
de�nition of the Cauchy stress tensor, which is given in the Eulerian formulation (Sec.3.2).
If an undeformed state can be distinguished in the continuum, the use of the Lagrangian
formulation with this state serving as the reference state may be more convenient to employ.

The Lagrangian formulation of the balance of linear momentum is based upon the
Piola-Kirchho� stress vector and tensor, which we now introduce. Let TK be the stress
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vector at a spatial point x at time t occupied by a material point X in the undeformed
area dAK:

t(n)da = tk(x; t)dak = TK(X; t)dAK : (4:66)

Using (1.101) we obtain from this

tk = j�1xk;KTK ; TK = jXK;ktk : (4:67)

If we now substitute the �rst of these into (4.32), we obtain

�
j�1xk;K

�
;k
T k + j�1xk;KTK;k + %f = %

Dv

Dt
:

In view of (1.24)2, the �rst term on the left-hand side is equal to zero. Furthermore, using
(4.3), (4.66) , and introducing

F (X; t) := f(x(X; t); t) (4:68)

we get

TK;K + %0F = %0
DV

Dt
in V: (4:69)

This is the Cauchy's equation of motion in the reference (Lagrangian) form. Note that it
formally agrees with the Eulerian form of the equation of motion (4.32).

For component representation we introduce the �rst and second Piola-Kirchho� stress
tensors Tkl and TKL by

TK = TKlil = TKLxl;Lil ; (4:70)

so that by (4.67) we have

TKl = jXK;ktkl or T (1) = jF�1 � t ; (4:71)

TKL = TKlXL;l = jXK;kXL;ltkl or T (2) = T (1)��F �1
�T

= jF�1�t��F �1
�T

; (4:72)

tkl =
1

j
xk;KTKl =

1

j
xk;Kxl;LTKL or t =

1

j
F � T (1) =

1

j
F � T (2) � F T ; (4:73)

where T (1) and T (2) is the symbolic notation for the �rst and second Piola-Kirchho� tensor,
respectively. From (4.70) it is now clear that TKl is the stress at x measured per unit
undeformed area at X =X(x; t).

Using (4.70) in (4.69) we obtain two di�erent forms of the equations of motion:

TKl;K + %0Fl = %0
DVl
Dt

in V; (4:74)

(TKLxl;L);K + %0Fl = %0
DVl
Dt

in V: (4:75)

Cauchy's second law of motion follows from tkl = tlk upon using (4.73). Hence in two
di�erent forms we have

TKlxk;K = TKkxl;K ; (4:76)
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TKL = TLK : (4:77)

The foregoing expressions may be used as a source for approximate theories in which
displacement gradient H is much small as compared to unity that the linearization is
justi�ed. To this end, we carry the linearized forms (1.60) and (1.61) into (4.71) and
(4.72), and we obtain

T (1) = (1 + trH) t�HT � t+O
�
�2
�
; (4.78)

T (2) = (1 + trH) t�HT � t� t �H +O
�
�2
�
: (4.79)

The last equation demonstrates that the symmetry of tensor T (2) has not been violated by
linearization process.

Supposing, in addition, that stresses are small as compared to unity (the in�nitesimal
deformation and stress theory), then

T (1) �= T (2) �= t ; (4:80)

showing that, in the in�nitesimal deformation and stress theory, there is no di�erence
between the Cauchy and the Piola-Kirchho� stresses.
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5. CONSTITUTIVE EQUATIONS

5.1 The need for constitutive equations

Basic principles of continuum mechanics, namely, conservation of mass, balance of mo-
menta, conservation of energy, and entropy inequality, discussed in Chapter 4, lead to the
fundamental equations:

@%

@t
+ div (%v) = 0 ; (5:1)

div t+ %f = %
Dv

Dt
; (5:2)

t = tT ; (5:3)

%
D"

Dt
= t :: d+ divq + %h ; (5:4)

%

�
D�

Dt
� 1

�

D"

Dt

�
+

1

�
t :: d +

1

�2
grad � � q � 0 : (5:5)

In total, they constitute eight independent equations (one for mass, three for linear momen-
tum, three for angular momentum and one for energy) and one inequality. The number of
unknowns %, vk, tkl, qk, ", and �, are eighteen provided that body forces fk and distribution
of heat sources h are given. Ten additional equations must be given in order the system to
be determinate except for some trivial situations, for example, rigid body motions in the
absence of heat conduction.

In the derivation of the equations (5.1) to (5.5) no di�erentiation has been made be-
tween various types materials. It is therefore not surprising that the foregoing equations are
not su�cient to explain fully the motions of materials having various type of physical prop-
erties. The character of the material is brought into the formulation through the so-called
constitutive equations, which specify the mechanical and thermal properties of particular
materials based upon their internal constitution. Mathematically, the usefulness of these
constitutive equations is to describe the relationships among the kinematic, mechanical,
and thermal �eld variables and to permit the formulations of well-posed problems of con-
tinuum mechanics. Physically, the constitutive equations de�ne various idealized materials
which serve as models for the behavior of real materials. However, it is not possible to
write one equation capable of representing a given material over its entire range of applica-
tion, since many materials behave quite di�erently under changing levels of loading, such
as elastic-plastic response due to increasing stress. Thus, in this sense it is perhaps better
to think of constitutive equations as representative of a particular behavior rather than of
a particular material.

In this text we deal with the constitutive equations of thermomechanical materials.
The study of the chemical changes and electromagnetic e�ects are excluded. A large class
of materials does not undergo chemical transition or produce appreciable electromagnetic
e�ects when deformed. However, the deformation and motion generally produce heat.
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Conversely, materials subjected to thermal changes deform and ow. The e�ect of thermal
changes on the material behavior depends on the range and severity of such changes.

The thermomechanical constitutive equations are relations between a set of thermome-
chanical variables. They may be expressed as

t(X; t) = F(x(X 0; � ); �(X 0; � );X; t) ;

q(X; t) = Q(x(X 0; � ); �(X 0; � );X; t) ; (5.6)

"(X; t) = E(x(X 0; � ); �(X 0; � );X; t) ;

�(X; t) = N (x(X 0; � ); �(X 0; � );X; t) :

Note that all response functions F , Q, E and N are assumed to depend on the same
set of dependent variables x(X 0; � ), �(X 0; � ), X and t. This is known as the axiom of
equipresence.

5.2 A general mechanical constitutive equation

A constitutive equation is a relation between a set of termomechanical variables. In purely
mechanical theory of a one-component system, which is taken as the �rst example, a
constitutive equation relates stress and strain tensors. Three fundamental axioms are
assumed to be valid for any constitutive theory of purely mechanical phenomena:

� Axiom of determinism: The present state of the stress at a material point X of
the body B at time t is uniquely determined by the past history of the motion of all
material points of the body B.

� Axiom of local action: The motion at distant material points from X does not
a�ect appreciably the stress at X .

� Axiom of frame indi�erence or axiom of objectivity: A constitutive equation
must be form-invariant under rigid motions of the spatial frame of reference.

According to the �rst axiom, the mechanical constitutive equation may be written as

t(X; t) = F [x(X 0; � );X; t] : (5.7)

X
0 2 B

� � t

where the response functional F is a tensor-valued function. This relation states, as a
starting assumption, an interaction between the past histories of the internal forces and
the motion of all materials points of the body B. The internal forces are represented
by the Cauchy stress tensor t; this may be justi�ed by the local form of the balance of
linear momentum. The axiom of determinism is a principle of exclusions. It excludes the
dependence of the material behavior at X on any point outside the body and any future
events. Consequently,

X 0 2 B ; � � t ; (5:8)
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where � are all past times and t is the present time.
The general functional F [�] is subject to the other two axioms. The axiom objectivity

states that the material properties cannot depend on the motion of the observer. If two
spatial frames x� and x can be made to coincide with a rigid motion, then they must be
related to each other as

x�(X; t�) = Q(t) � x(X; t) + b(t) ; t� = t� a ; (5:9)

where Q(t) is a time-dependent orthogonal tensor,

Q(t) �QT (t) = QT (t) �Q(t) = I ; detQ = 1 ; (5:10)

b(t) is a time-dependent vector and a is a constant. Equations (5.9) express general rigid
motion of the spatial frame of reference and shift of the origin of time. In fact, b(t)
corresponds to the translation, Q(t) to the rotation of the spatial frame of reference and a
is a constant shift of the origin of time.

Di�erentiating eqn.(5.9) with respect to X we can show that the Cauchy stress tensor
transforms under rigid motion of frame according to the relation

t�(X; t�) = Q(t) � t(X; t) �QT (t): (5:11)

The transformation rule for the deformation gradient is readily to show that

F �(X; t) = Q(t) � F (X; t) ; (5:12)

that is, this two-point tensor transforms like a vector under a rigid motion of frame at time
t. In view of the transformation of physical quantities in the context of a rigid motion of
frame, we call scalar-, vector and tensor-valued physical quantities �, v and A objective if
they transform under a rigid motion of frame according to

�� = � ;

v� = Q � v ; (5.13)

A� = Q �A �QT :

In the sense of this de�nition, the mass of a material body is an objective scalar, the
force is an objective vector and the Cauchy stress tensor is an objective tensor. Quantities
which are not objective are, among others, the position vector, the velocity vector and the
deformation gradient. The property of a particular quantity to be objective or not is either
a priori postulated or derived from other de�nitions.

According to the axiom of objectivity, the form of functional F should be the same in
any two objectively equivalent motions, that is

t�(X; t�) = F [x�(X 0; � �);X; t�] : (5.14)

X
0 2 B

�
� � t�
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Note that no star is attached to the functional F : The axiom of frame indi�erence states
that an objective change of frame has no inuence on the functional F which maps the
deformation history into the present state of stress. Substituting eqns.(5.7) and (5.11) into
(5.14) we can conclude that the functional F must satisfy a restrictive condition of the
form

Q(t) � F [x(X 0; � );X; t] �QT (t) = F [x�(X 0; � �);X; t�] : (5.15)

X
0 2 B X

0 2 B

� � t �
� � t�

for any arbitrary orthogonal tensor-valued functions of the timeQ(t), any arbitrary vector-
valued function b(t) and any arbitrary real number a.

Now, let us examine the restrictions imposed on the forms of the constitutive functional
by considering separately three special rigid changes of frame, which taken successively in
any order can represent the general rigid motion of the spatial frame of reference.

(a) Shift of time such that the present time t becomes the reference time:

Q(� ) = I ; b(� ) = 0 ; and a = t (5:16)

for all past times � � t, where t is the present time. Equation (5.9) gives x�(X ; � �) =
x(X; � ), and t� = 0. Then

F [x(X 0; � );X; a] = F [x(X 0; � );X; 0] : (5:17)

Thus F cannot depend explicitly on time.
(b) Rigid translation of the spatial frame such that the moving origin moves with the

material point X:

Q(� ) = I ; b(� ) = �x(X; � ) ; and a = 0 : (5:18)

This means that the spatial frame of reference is translated so that the material point X
at time � remains at the origin. From (5.9) it follows that

x�(X 0; � ) = x(X 0; � )� x(X; � ) ; � � = � ; (5:19)

Substituting this into (5.15) and using (5.7), we get

t(X; t) = F [x(X 0; � )� x(X; � );X] : (5.20)

X
0 2 B

� � t

Thus the stress at the material pointX and time t depends only on the history for � � t of
the relative deformation (relative toX) of the set of materials pointsX 0 in a neighborhood
of X.
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According to the axiom of local action postulated at the beginning of this section,
the neighborhood of material point X, i.e., jX 0 �Xj is assumed to be arbitrarily small.
Assuming di�erentiability, relative deformation may be permissible to approximate only
by the �rst-order gradient

x(X 0; � )� x(X; � ) � F (X; � ) � dX ; (5:21)

where F (X; � ) is the deformation gradient tensor at X at time � , and dX = X 0 �X.
This suggests that, since the relative motion history of an in�nitesimal neighborhood of
X is completely determined by the history of deformation gradient at X, then the stress
t(X; t) must be determined by the history of F (X; � ) for � � t. Such materials are called
simple materials. We also note that if we retain higher-order gradients in (5.21), then
we obtain nonsimple materials of various classes. For example, by including the second-
order gradients into argument of F we get the theory of couple stress. In other words,
the behavior of the material point X is not a�ected by the histories of the distance points
from X. To any desired degree of accuracy, the whole con�guration of a su�ciently small
neighborhood of the material pointX is determined by the history of the value of F (X; � ),
and we may say that the stress t(X; t), which was assumed to be determined by the local
con�guration, is completely determined by F (X; � ). That is, the the general constitutive
equation (5.7) reduces to the form

t(X; t) = F [F (X ; � );X] : (5.22)

� � t

The materials described by this constitutive equation are memory-dependent, that is, the
stress atX at time t depends on the history up to t of the two-point-tensor-valued function
F of the simple argument � (for �xed X). For brevity of notation we omit writing X in
the arguments of F :

t(t) = F [F (� )] : (5.23)

� � t

(c) Time-dependent rigid rotations of the spatial frame of reference. Now, we consider
the restrictions imposed on F by the principle of frame indi�erence under arbitrary time-
dependent rotation such that b(� ) = 0, a = 0, and Q(� ) is arbitrary. In this rotation, the
stress tensor t transforms as

t�(t) = Q(t) � t(t) �QT (t) ; (5:24)

where writing X in the argument of stress t is omitted. Using (5.23) and (5.12) we can
conclude that the functional F must satisfy a restrictive condition of the form

Q(t) � F [F (� )] �QT (t) = F [Q(� ) � F (� )] (5.25)

� � t � � t
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for all orthogonal tensor-valued functions Q(�) and all deformation processes F (�). To
solve this functional equation, we recall the polar decomposition (1.38) of the deformation
gradient

F (� ) = R(� ) �U (� ) (5:26)

into a rotation tensor R and the right stretch tensor U =
p
C =

p
F T � F . Since the

functional equation (5.25) is postulated to hold for all rotation histories Q(�), we set
Q(� ) = RT (� ) and arrive at

t(t) = R(t) � F [U (� )] �RT (t) : (5.27)

� � t

Thus the frame indi�erence requires according to eqn.(5.27) that the dependence of stress
on F must take the form of an arbitrary function of U with the additional explicit depen-
dence on R as shown.

Many other reduced forms are possible. For instance, expressing rotation R(t) through
the deformation gradient, R = F �U�1, leads to the following representation of the Cauchy
stress tensor,

t(t) = F (t) �U�1(t) � F [U (� )] �U�1(t) � F T (t) : (5.28)

� � t

With
j = detF = det (R �U) = detU ; (5:29)

we have

t(t) =
1

j
F (t) �U�1(t) � (detU ) F [U (� )] �U�1(t) � F T (t) : (5.30)

� � t

Now, if the stretch U is replaced by the Green deformation tensor,

U (� ) =
p
C(� ) ; � � t ; (5:31)

equation (5.30), after introducing a new functional ~F of the deformation history C, can
be written in the form

t(t) =
1

j
F (t) � ~F [C(� )] � F T (t) : (5.32)

� � t

Another useful reduced form may be obtained if the second Piola-Kirchho� stress tensor
T (2) de�ned by eqn.(4.72),

T (2) = (detF )F �1 � t � (F T )�1 ; (5:33)
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is used in the constitutive equation instead of the Cauchy stress tensor t. With (5.28), we
obtain

T (2)(t) = (detU(t))U�1(t) � F [U (� )] �U�1(t) ; (5.34)

� � t

and we can see that the right-hand side is a functional of the stretch historyU (�) only. Now,
we replace the stretch U by the Green deformation tensor according to (5.31), substitute
this into eqn.(5.34), and de�ne a new functional G of the deformation history C. The
general mechanical constitutive equation can be written in the reduced form as

T (2)(t) = G [C(� )] : (5.35)

� � t

According to this result, the second Piola-Kirchho� stress tensor is a function of the past
history of the Green deformation tensor. In view of (1.31) and (5.12), we have

C� = (F �)T � F � = F T �QT �Q � F = F T � F = C : (5:36)

It is then easy to verify the identity

�
T (2)

�
�

= G (C�) = G (C) = T (2) : (5:37)

Therefore the reduced form (5.35) is necessary and su�cient to satisfy the axiom of frame
indi�erence. In other words, this axiom has led to the conclusion that in terms of the
second Piola-Kirchho� stress tensor the response functional G depends only on the scalars
CKL = x;K � x;L and not on the rotation. We often say that the response functional G is
an isotropic function of three vectors x;K.

Another useful reduced form, equivalent to (5.35), arises if we express the past strain
history C(� ) = C(t� s), (� � t; s � 0) in terms of the relative di�erence history C t

d(s),

Ct
d(s) := C(t� s)�C(t) : (5:38)

We insert C(� ) = C(t) +C t
d(s) in (5.35) and obtain

T (2)(t) = G [C(� )] = H �
Ct

d(s);C(t)
�
; (5.39)

� � t s � 0

where H is a new functional of the di�erence history Ct
d(�) depending on the present strain

C(t) as a parameter. If we introduce the static part

f(C) := H [0(s);C(t)] (5.40)

s � 0
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and the memory part

F �
Ct

d(s);C(t)
�
:= H �

C t
d(s);C(t)

�� f (C) ; (5.41)

s � 0 s � 0

we may deduce a second version of the reduced form (5.39),

T (2)(t) = f (C(t)) + F �
Ct

d(s);C(t)
�
: (5.42)

s � 0

According to this equation the second Piola-Kirchho� stress tensor is decomposed into a
static part and a memory part. The static part is a function of the present static strain
C(t), whereas the memory part is a function of the past history of the di�erence strain
C t

d(�) depending on the present strain C(t) as a parameter. In particular, the memory
part vanishes for strain history which is identically constant (`static history'), i.e.,

F [0(s);C(t)] = 0 : (5.43)

s � 0

We close this section with a brief interpretation of the underlying ideas. The functional
formulations of the most general mechanical constitutive equation (5.27) or (5.32) or (5.35)
or (5.39) corresponds to the assumption that a material body is able to memorize past
events of its deformation. If there is no memory of the material, the memory functional F
in the reduced form (5.42) degenerates to zero and

T (2)(t) = f (C(t)) : (5:44)

In this case, a material body is called elastic.
Conversely, any kind of inelastic behavior corresponds to a memory property of the

material. The speci�c memory behavior of a particular inelastic material can be very
di�erent in its intensity and character. It may be a long-range memory, as it is usually the
case in plasticity. The material memory can fade away for those events which are long ago;
this character is associated to the term viscoelasticity. In some cases it may happen that
only an in�nitesimal part of the strain history inuences the present stress. Then the stress
tensor depends on strain rate and the term viscosity is the appropriate characterization.

The general theory of material behavior provides a large variety of possibilities to obtain
special representation of the functional F or ~F or G or H in the reduced forms (5.27) or
(5.32) or (5.35) or (5.39). Functional relations can be de�ned explicitly by integrals or
be tensor-valued functions of strain and strain-rate tensors. They can also be de�ned
implicitly by means of ordinary di�erential equations.

5.3 Elastic materials

Definition. A simple material is called elastic if the stress tkl, heat vector qk, internal
energy density ", and entropy density � at (X; t) depend only on the deformation gradient
x;K and temperature �, not on the entire past thermomechanical history.
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This de�nition of the elastic solid can be expressed mathematically by posing a set of
constitutive equations of the form

tkl = fkl(x;K; �;X; t) ;

qk = gk(x;K; �;X; t) ; (5.45)

" = e(x;K; �;X; t) ;

� = n(x;K; �;X; t) :

The axiom of the objectivity applied to the �rst constitutive equation implies that the
response function fkl cannot explicitly depend on time t and the dependence of fkl on the
deformation gradient must take a special explicit form. Here, we start with the reduced
form (5.32); its componental form reads

tkl =
%

%0
FKL(C; �;X)xk;Kxl;L ; (5:46)

where
FKL(C; �;X) := IK � ~F(C; �;X) � IL : (5:47)

The axiom of objectivity can be applied analogously to vector and scalar-valued functions
(such as gk, e and n) resulting in

qk =
%

%0
GK(C; �;X)xk;K ;

" = E(C; �;X) ; (5.48)

� = N(C; �;X) :

Next, we employ the Clausius-Duhem inequality (5.5). Di�erentiating (5.48)2;3 with
respect to time,

:
"=

@E

@CKL

:
CKL +

@E

@�

:
� ;

:
�=

@N

@CKL

:
CKL +

@N

@�

:
� ;

and substituting these into (5.5), we get
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�
@N

@CKL

� 1

�

@E

@CKL

�
:
CKL +%

�
@N
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� 1

�

@E

@�

�
:
� +

1

�

%

%0
FKLxk;Kxl;Ldlk+

1

�2
grad � �q � 0 :

(5:49)
From (2.12), we have

:
CKL= 2dklxk;Kxl;L ;

so that,

%

�
@N

@CKL

� 1

�

@E

@CKL

+
1

2%0�
FKL

�
:
CKL +%

�
@N

@�
� 1

�

@E

@�

�
:
� +

1

�2
grad � � q � 0 : (5:50)
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This inequality must be satis�ed for all independent thermomechanical processes according

to the so-called axiom of thermomechanical admissibility. Since
:
CKL,

:
�, and grad �

occur only linearly with coe�cients which are not functions of these quantities, (5.50)

cannot be maintained for all
:
CKL,

:
�, and grad � unless the coe�cients of these terms

vanish separately. Thus

FKL = 2%0

�
@E

@CKL

� � @N

@CKL

�
; (5.51)

0 =
@N

@�
� 1

�

@E

@�
; (5.52)

and
grad � 6= 0 and q = 0 for adiabatic changes ; (5:53)

or
grad � = 0 and q 6= 0 for isothermal changes : (5:54)

In place of the internal energy density ", it is convenient to introduce the Helmholtz
free energy  by

 := "� �� = E � �N =  (C; �;X) : (5:55)

Using this in the above equations, we get

FKL = 2%0
@ 

@CKL

; (5:56)

N = �@ 
@�

: (5:57)

Substituting (5.56) and (5.57) into (5.46) and (5.48)3, we get

tkl = 2%
@ 

@CKL

xk;Kxl;L ; (5:58)

� = �@ 
@�

: (5:59)

To ensure the symmetry of the tensor tkl, we must take the symmetric part of tensor
xk;Kxl;L on the right-hand side of the constitutive equation (5.58), so that,

tkl = %
@ 

@CKL

(xk;Kxl;L + xl;Kxk;L) : (5:60)

We have therefore proved
Theorem. An elastic solid is thermodynamically admissible if and only if the stress,

internal energy, and entropy are derivable from a potential W and the heat ux is zero (the
solid must undergo locally adiabatic changes) or the temperature is constant (the solid must
undergo locally isothermal changes) so that

tkl =
%

%0

@W

@CKL

(xk;Kxl;L + xl;Kxk;L) : (5:61)
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" =
1

%0

�
W � �

@W

@�

�
; (5:62)

� = � 1

%0

@W

@�
; (5:63)

where
W (C; �;X) := %0 : (5:64)

Finally, we write the expressions for the Piola-Kirchho� tensors TKl and TKL. Substi-
tuting (5.61) into (4.51) and using the symmetry CKL = CLK, we get

TKL = 2
@W

@CKL

; (5:65)

TKl = 2
@W

@CKM

xl;M : (5:66)

5.3.1 Incompressible elastic solids

For the incompressible elastic solids, the stress constitutive equation (5.60) must be further
restricted, since in this case the volume is preserved during the motion. It also means that
the mass density remains unchanged, that is,

j =
p
detC =

%0
%
= 1 ; (5:67)

where the �rst equality follows from (1.31)2. This condition places a restriction on C,
namely, all components CKL of C are not independent. Hence we must take proper caution
in evaluating the partial derivatives @ =CKL occurring in (5.60). To take care of this
situation, we employ the method of Lagrange's multipliers. Thus we replace the free
energy  =  (C; �;X) by function

~ (C; �;X; p) =  (C; �;X)� p

2%0
(detC � 1) ; (5:68)

where p is the unknown Lagrange multiplier. Taking the partial derivative of ~ with respect
to CKL, we obtain

@ ~ 

@CKL

=
@ 

@CKL

� p

2%0

@ detC

@CKL

;

where @ =@CKL is to be calculated without any regard to the constraint (5.67). Combining
(1.25) and (1.33)2, we get

@ detC

@CKL

= (detC)BLK = (detC)XK;mXL;m (5:69)
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where we have substituted for the Piola deformation tensor B from (1.32)2. Substituting
the last relations and using the constraint (5.69), (5.60) takes the form

tkl = �p�kl + %
@ 

@CKL

(xk;Kxl;L + xl;Kxk;L) : (5:70)

The function p(x; t) introduced here is called pressure. Equation (5.70) shows that in
the case of incompressibility the constitutive equation determines the stress tensor up to
a pressure. This unknown is to be determined upon integration of di�erential equations
and using the boundary conditions. We caution the reader of the di�erence between this
pressure and the thermodynamic pressure.

5.3.2 Linear elastic materials

In the preceding sections we found that the most general constitutive equations of an elastic
solid have the forms expressed by equations (5.61) to (5.64), where (5.61) can be expressed
alternatively by (5.65) or (5.66) when the Lagrangian representation is considered. For our
purpose, we write these equations in terms of the Lagrangian strain measure E related to
C by

EKL :=
1

2
(CKL � �KL) : (5:71)

Equation (5.65) in terms of E reads

TKL =
@W

@EKL

; (5:72)

where the potential W is now to be considered a function of E, �, and X, that is,

W = W (E; �;X) = %0 ; (5:73)

where  is the free energy.
By using the equation (5.72) of nonlinear elastic solids, we can derive various approxi-

mate theories. A polynomial approximation in the strain components EKL is based upon
an expansion of the form

W = W0 +WKLEKL +
1

2
WKLMNEKLEMN +WKLMNPQEKLEMNEPQ � � � ; (5:74)

where W0, WKL, WKLMN , WKLMNPQ are, in general, functions of X, for inhomogeneous
solids, and �. For the homogeneous solids they are functions of � only.

We are interested only in the linear theory which assumes that either EKL � 1
and the strain measure E can be replaced by the in�nitesimal strain tensor ~E or that
jWKLMNPQj � jWKLMN j and jWKLMNPQj � jWKLj. Thus, we need not retain terms
beyond the quadratic terms in E in (5.74):

W = W0 +WKLEKL +
1

2
WKLMNEKLEMN : (5:75)
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Substituting (5.75) into (5.72), we get

TKL = WKL +
1

2
(WKLMN +WMNKL)EMN : (5:76)

If the stress vanishes in the natural state, then WKL = 0. Introducing

CKLMN :=
1

2
(WKLMN +WMNKL) ; (5:77)

the constitutive equation (5.76) reduces to the form

TKL = CKLMNEMN : (5:78)

where the elastic coe�cients CKLMN may, in general, depend upon the position X and
temperature �. If the elastic coe�cients are constant, the material is said to be homoge-
neous. The constitutive law given by (5.78) is known as the generalized Hooke's law.

The de�nition (5.77) shows that the elastic coe�cients are symmetric with respect to
KL and MN :

CKLMN = CMNKL : (5:79)

Furthermore, the symmetry of both the stress and strain tensors implies that

CKLMN = CLKMN = CKLNM : (5:80)

Thus, the symmetry properties (5.79) and (5.80) reduce 34 = 81 independent elastic co-
e�cients to 21 distinct coe�cients at most. Finally, the stress potential can be expressed
as

W =
1

2
TKLEKL : (5:81)

In the linearized theory we assume that displacement gradients are everywhere much
smaller than unity, i.e., @uk=@xl � 1. Under such assumption, the strain tensor EKL can be
replaced by the in�nitesimal strain tensor ~EKL, EKL

�= ~EKL. Moreover, the linearization
also means that no distinction need be made between the reference coordinates XK and the
current spatial position xk of the same material point; the shifter symbol �Kk is reduced
to the Kronecker delta. If we substitute

1

j
= 1� uk;k ; xk;K = �Kk + uk;K ; (5:82)

and (5.78) into (4.50)2, we get

tkl = (1� uk;k) (�Kk + uk;K) (�Ll + ul;L)CKLMN
~EMN : (5:83)

Remembering that for small strains

~EMN
�= ~emn�Mm�Nn ; (5:84)
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we may linearize (5.83) as

tkl = cklmn~emn ; or t = c :: ~e ; (5:85)

where
cklmn := CKLMN�Kk�Ll�Mm�Nn (5:86)

are the spatial elastic moduli that are subject to the symmetry conditions

cklmn = cmnkl = clkmn = cklnm : (5:87)

The stress potential can now be expressed as

W =
1

2
cklmn~ekl~emn : (5:88)

5.3.3 Hooke's law for isotropic media

The highest symmetry of a material is reached if a solid possesses no preferred direction
with respect to its elastic property. This also means that the elastic tensor cklmn is invariant
under any orthogonal transformation of the coordinate system. In such a case, the material
is said to be isotropic. Otherwise, the material is anisotropic.

Note that any orthogonal transformation of the coordinate system may be expressed
by transformation equations

x0k = Qklxl (5:89)

subject to
QklQml = QlkQlm = �km ; detQkl = �1 : (5:90)

The components of a second-order Cartesian tensor t transform under the orthogonal
transformation of the coordinate system as

t0kl = QkmQlntmn ; (5:91)

which may be readily inverted with the help of the orthogonality conditions to yield

tkl = QmkQnlt
0

mn : (5:92)

Note carefully the location of the summed indices m and n in (5.91) and (5.92).
The generalized Hooke's law for isotropic material is reduced to the form

tkl = �#�kl + 2�~ekl ; or t = �#I + 2�~e ; (5:93)

where
# := ~ekk = divu : (5:94)

We see that for isotropic elastic behavior the 21 constants of the generalized Hooke's law
are reduced to two, � and �, known as the Lam�e coe�cients.
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Proof of (5.93) will be accomplished in three steps. First, we show that for an isotropic
linear elastic solid the principal axes of the stress and (small) strain tensors coincide.
To proof it, we take, without loss of generality, the coordinate axes xk in the principal
directions of strain tensor e. Then ~e12 = ~e13 = ~e23 = 0. We shall now show that t23 = 0.
We �rst have

t23 = A~e11 +B~e22+ C~e33

with A := c2311, B := c2322, and C := c2333. We now rotate the coordinate system through
an angle of 180o about the x3-axis. Then x01 = �x1, x02 = �x2, and x03 = x3, and the
matrix of the transformation

x0 = Qx

is

Q =

0
@ �1 0 0

0 �1 0
0 0 1

1
A :

In view of (5.91), we therefore have

t023 = Q2mQ3ntmn = �t23 ;
~e011 = Q1mQ1n~emn = ~e11 ;

~e022 = Q2mQ2n~emn = ~e22 ;

~e033 = ~e33 :

The relation
t023 = A~e011+B~e022 + C~e033 = A~e11 +B~e22+ C~e33 = t23

is now the consequence of isotropy since the constants A, B, and C do not depend on the
coordinate system. Thus

�t23 = t023 = t23 ;

which implies that t23 = 0. Similarly it can be shown that t12 = t13 = 0.
Second, consider the component t11. Taking the coordinate axes in principal directions

of strain, we obtain
t11 = a~e11+ b~e22 + c~e33 ;

with a := c1111, b := c1122, and c := c1133. We now rotate the coordinate system through
an angle 90o about the x1-axis in such a way that

x01 = x1 ; x02 = x3 ; x03 = �x2 :
The matrix of this transformation is

Q =

0
@ 1 0 0

0 0 1
0 �1 0

1
A :
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We have
t011 = Q1mQ1ntmn = t11 ;

~e011 = ~e11 ; ~e022 = Q2mQ2n~emn = ~e33 ; ~e033 = ~e22 :

In view of isotropy, the constants a, b, and c do not depend on the coordinate system, so
that

t011 = a~e011+ b~e022 + c~e033 ;

and substituting for ~e0kk, we get

t011 = a~e11+ b~e33 + c~e22 :

This implies that b = c since t11 = a~e11+ b~e22 + c~e33. We can thus write t11 as

t11 = a~e11 + b (~e22 + ~e33) = �#+ 2�~e11 ;

where
� = b = c1122 ; 2� = a� b = c1111� c1122 :

The same relations can be obtained for subscripts 2 and 3. In summary, we have

t11 = �#+ 2�~e11 ;

t22 = �#+ 2�~e22 ;

t33 = �#+ 2�~e33 ;

tkl = 0 for k 6= j ;

which is the generalized Hooke's law for isotropic body in principal directions. Shortly
written,

tkl = �#�kl + 2�~ekl :

Third, we now rotate the coordinate system with the axes xk coinciding with principal
directions of strain to arbitrary coordinate system with the axes x0k and show that Hooke's
law for isotropic material also holds in a rotated coordinate system x0k. Denoting by Qkl

the transformation matrix of this rotation, the stress and strain tensor transform according
to the transformation law (5.91) for second-order tensors. Multiplying the above equation
by QmkQnl, using the transformation law (5.91) and the orthogonality property (5.90) of
Qkl, we have

t0mn = �#�mn + 2�~e0mn :

Moreover,
#0 = ~e0mm = QmkQml~ekl = �kl~ekl = ~ekk = # :

We �nally have
t0mn = �#0�mn + 2�~e0mn ;

which proves (5.93).
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We have seen that the Lam�e coe�cients are expressed in terms of the elastic coe�cients
as

� = c1122 ; � = c1212 : (5:95)

We note without proof that the most general fourth-order isotropic tensor s is of the
form

sklmn = ��kl�mn + � (�km�ln + �kn�lm) + � (�km�ln � �kn�lm) ; (5:96)

where �, �, and � are scalars. If s is replaced by the elastic tensor c, the symmetry
relations cklmn = clkmn = cklnm imply that � must be zero since by interchanging k and l
in the expression

� (�km�ln � �kn�lm) = � (�lm�kn � �ln�km)
we see that � = �� and, consequently, � = 0. Thus, the elastic tensor for a linear, isotropic
solid reads

cklmn = ��kl�mn + � (�km�ln + �kn�lm) : (5:97)

5.3.4 Restrictions on elastic coe�cients

In this section, we analyze several hypothetical experiments and consequent restrictions
that must be placed upon elastic moduli in order that they may represent a real material
adequately.

We will assume that Hooke's law (5.93) for linear isotropic solid is invertible for ~ekl. In
fact, setting k = l, this equation gives

tkk = (3� + 2�) ~ekk : (5:98)

Now, by solving (5.93) for ~ekl and substituting from (5.98), we obtain the inverse form of
Hooke's law for the isotropic material,

~ekl =
1

2�
tkl � �

2�(3� + 2�)
tmm�kl : (5:99)

We observe that for ~ekl to be uniquely determined by tkl we must have

� 6= 0 ; 3� + 2� 6= 0 (5:100)

and in order not to have zero strain for a �nite stress we must have

j�j <1 ; j3� + 2�j <1 : (5:101)

Let us decompose the in�nitesimal strain tensor ~e into two component tensors:

~ekl =
1

3
#�kl + ~�kl ; (5:102)
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where the so-called spherical strain tensor #�kl=3 is proportional to the unit second-order
tensor and factor #, which is de�ned by (5.94) and known as the mean normal strain, and
the so-called deviator strain tensor ~�kl is a trace-free, symmetric, second-order tensor,

~�kl := ~ekl � 1

3
#�kl : (5:103)

The same decomposition of the stress tensor t reads

tkl = �p�kl + �kl ; (5:104)

where the scalar p is the negative of the mean normal stress and calledmechanical pressure,

p := �1

3
tmm ; (5:105)

and the deviator stress tensor �kl is a trace-free, symmetric, second-order tensor, de�ned
by

�kl := tkl + p�kl : (5:106)

The isotropic Hooke's law takes a particularly simple form in spherical and deviator
parts of ~e and t. Substituting (5.94) and (5.105) into (5.98) gives,

� p = k# ; (5:107)

with

k := � +
2

3
� (5:108)

referred to as the elastic bulk modulus. To �nd the equation connecting the deviatoric
parts, we substitute (5.102) and (5.104) into (5.93) and use (5.107):

�kl = 2�~�kl ; (5:109)

where � is also called the elastic shear modulus.
Finally, we derive the strain-energy function for an isotropic elastic solid. For this

purpose, we successively substitute (5.97) into (5.88), giving

W (~ekl) =
1

2
�#2 + �~ekl~ekl ; (5:110)

which, using (5.103) and (5.108), can be rewritten as

W (~ekl) =
1

2
k#2 + �~�kl~�kl : (5:111)

(i) Hydrostatic pressure. Experimental observations indicate that under hydrostatic
pressure the volume of an elastic solid diminishes. The state of stress at a point of the
body is said to be hydrostatic if the stress tensor has the form

tkl = �p�kl ; p > 0 : (5:112)
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From (5.107) we see that
p = �k# ; (5:113)

where # := ~ekk = divu = j � 1 = (dv � dV )=dV is the cubical dilatation. In the case of
hydrostatic pressure, clearly dv < dV and hence # < 0. We must thus have k � 0 which
implies that

3� + 2� � 0 : (5:114)

(ii) Simple shear. Consider a simple constant shear in which

t12 6= 0 ; tkl = 0 otherwise : (5:115)

In this case (5.99) gives
t12 = 2�~e12 : (5:116)

Experimental observation of small deformations of elastic solids subjected to simple shear
indicates that t12 and ~e12 have the same direction. Consequently,

� > 0 : (5:117)

(iii) Uniaxial tension. Let a circular cylinder be subjected to a uniform axial tension
t11 and all other tkl = 0. Through (5.99) for this case we �nd that

~e11 =
�+ �

�(3� + 2�)
t11 ; ~e22 = ~e33 = � �

2�(3� + 2�)
t11 ; (5:118)

~e23 = ~e31 = ~e12 = 0 :

Thus for t11 > 0 (t11 < 0), cylinder will elongate, ~e11 > 0 (shorten, ~e11 < 0) and its
diameter will contract, ~e22 < 0, ~e33 < 0 (expand, ~e22 > 0, ~e33 > 0). Employing (5.114) and
(5.117), this results in

� > 0 : (5:119)

Collecting the results of (i){(iii) we have

0 < � <1 ; 0 < � <1 : (5:120)

These restrictions on the moduli of isotropic materials are universally agreed.
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