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Physical Constants

Name Symbol Value Unit

Number � � 3.14159265
Number e e 2.718281828459

Euler's constant  = lim
n!1

�
nP

k=1
1=k � ln(n)

�
= 0:5772156649

Elementary charge e 1:60217733 � 10�19 C
Gravitational constant G; � 6:67259 � 10�11 m3kg�1s�2

Fine-structure constant � = e2=2hc"0 � 1=137
Speed of light in vacuum c 2:99792458 � 108 m/s (def)
Permittivity of the vacuum "0 8:854187 � 10�12 F/m
Permeability of the vacuum �0 4� � 10�7 H/m
(4�"0)�1 8:9876 � 109 Nm2C�2

Planck's constant h 6:6260755 � 10�34 Js
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Electron mass me 9:1093897 � 10�31 kg
Proton mass mp 1:6726231 � 10�27 kg
Neutron mass mn 1:674954 � 10�27 kg
Elementary mass unit mu = 1

12m(
12
6C) 1:6605656 � 10�27 kg

Nuclear magneton �N 5:0508 � 10�27 J/T

Diameter of the Sun D� 1392 � 106 m
Mass of the Sun M� 1:989 � 1030 kg
Rotational period of the Sun T� 25.38 days
Radius of Earth RA 6:378 � 106 m
Mass of Earth MA 5:976 � 1024 kg
Rotational period of Earth TA 23.96 hours
Earth orbital period Tropical year 365.24219879 days
Astronomical unit AU 1:4959787066 � 1011 m
Light year lj 9:4605 � 1015 m
Parsec pc 3:0857 � 1016 m
Hubble constant H � (75� 25) km�s�1�Mpc�1
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Chapter 1

Mechanics

1.1 Point-kinetics in a �xed coordinate system

1.1.1 De�nitions

The position ~r, the velocity ~v and the acceleration ~a are de�ned by: ~r = (x; y; z), ~v = ( _x; _y; _z),
~a = (�x; �y; �z). The following holds:

s(t) = s0 +

Z
j~v(t)jdt ; ~r(t) = ~r0 +

Z
~v(t)dt ; ~v(t) = ~v0 +

Z
~a(t)dt

When the acceleration is constant this gives: v(t) = v0 + at and s(t) = s0 + v0t+ 1
2at

2.
For the unit vectors in a direction ? to the orbit ~et and parallel to it ~en holds:

~et =
~v

j~vj =
d~r

ds
_~et =

v

�
~en ; ~en =

_~et

j _~etj
For the curvature k and the radius of curvature � holds:

~k =
d~et
ds

=
d2~r

ds2
=

����d'ds
���� ; � =

1

jkj

1.1.2 Polar coordinates

Polar coordinates are de�ned by: x = r cos(�), y = r sin(�). So, for the unit coordinate vectors holds:
_~er = _�~e�, _~e� = � _�~er
The velocity and the acceleration are derived from: ~r = r~er , ~v = _r~er + r _�~e�, ~a = (�r� r _�2)~er + (2 _r _�+
r��)~e�.

1.2 Relative motion

For the motion of a point D w.r.t. a point Q holds: ~rD = ~rQ+
~! � ~vQ
!2

with ~QD = ~rD�~rQ and ! = _�.

Further holds: � = ��. 0 means that the quantity is de�ned in a moving system of coordinates. In a
moving system holds:
~v = ~vQ + ~v 0 + ~! � ~r 0 and ~a = ~aQ + ~a 0 + ~�� ~r 0 + 2~! � ~v � ~! � (~! � ~r 0)
with j~! � (~! � ~r 0)j = !2~rn 0

1.3 Point-dynamics in a �xed coordinate system

1.3.1 Force, (angular)momentum and energy

Newton's 2nd law connects the force on an object and the resulting acceleration of the object where
the momentum is given by ~p = m~v:

~F (~r;~v; t) =
d~p

dt
=
d(m~v)

dt
= m

d~v

dt
+ ~v

dm

dt
m=const

= m~a

2
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Newton's 3rd law is given by: ~Faction = �~Freaction.
For the power P holds: P = _W = ~F � ~v. For the total energy W , the kinetic energy T and the
potential energy U holds: W = T + U ; _T = � _U with T = 1

2mv
2.

The kick ~S is given by: ~S = �~p =

Z
~Fdt

The work A, delivered by a force, is A =

Z 2

1

~F � d~s =
Z 2

1
F cos(�)ds

The torque ~� is related to the angular momentum ~L: ~� = _~L = ~r � ~F ; and
~L = ~r � ~p = m~v � ~r, j~Lj = mr2!. The following equation is valid:

� = �@U
@�

Hence, the conditions for a mechanical equilibrium are:
P ~Fi = 0 and

P
~�i = 0.

The force of friction is usually proportional to the force perpendicular to the surface, except when
the motion starts, when a threshold has to be overcome: Ffric = f �Fnorm � ~et.

1.3.2 Conservative force �elds

A conservative force can be written as the gradient of a potential: ~Fcons = �~rU . From this follows
that r� ~F = ~0. For such a force �eld also holds:I

~F � d~s = 0 ) U = U0 �
r1Z
r0

~F � d~s

So the work delivered by a conservative force �eld depends not on the trajectory covered but only on
the starting and ending points of the motion.

1.3.3 Gravitation

The Newtonian law of gravitation is (in GRT one also uses � instead of G):

~Fg = �Gm1m2

r2
~er

The gravitational potential is then given by V = �Gm=r. From Gauss law it then follows: r2V =
4�G%.

1.3.4 Orbital equations

If V = V (r) one can derive from the equations of Lagrange for � the conservation of angular momen-
tum:

@L
@�

=
@V

@�
= 0) d

dt
(mr2�) = 0) Lz = mr2� = constant

For the radial position as a function of time can be found that:�
dr

dt

�2
=

2(W � V )
m

� L2

m2r2

The angular equation is then:

�� �0 =
rZ

0

"
mr2

L

r
2(W � V )

m
� L2

m2r2

#�1
dr

r�2�eld
= arccos

 
1 +

1
r � 1

r0
1
r0
+ km=L2z

!

If F = F (r): L =constant, if F is conservative: W =constant, if ~F ? ~v then �T = 0 and U = 0.
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Kepler's equations

In a force �eld F = kr�2, the orbits are conic sections with the origin of the force in one of the foci
(Kepler's 1st law). The equation of the orbit is:

r(�) =
`

1 + " cos(� � �0) ; or: x2 + y2 = (` � "x)2

with

` =
L2

G�2Mtot
; "2 = 1 +

2WL2

G2�3M2
tot

= 1� `

a
; a =

`

1� "2 =
k

2W

a is half the length of the long axis of the elliptical orbit in case the orbit is closed. Half the length
of the short axis is b =

p
a`. " is the excentricity of the orbit. Orbits with an equal " are of equal

shape. Now, 5 types of orbits are possible:

1. k < 0 and " = 0: a circle.

2. k < 0 and 0 < " < 1: an ellipse.

3. k < 0 and " = 1: a parabole.

4. k < 0 and " > 1: a hyperbole, curved towards the centre of force.

5. k > 0 and " > 1: a hyperbole, curved away from the centre of force.

Other combinations are not possible: the total energy in a repulsive force �eld is always positive so
" > 1.

If the surface between the orbit covered between t1 and t2 and the focus C around which the planet
moves is A(t1; t2), Kepler's 2nd law is

A(t1; t2) =
LC
2m

(t2 � t1)

Kepler's 3rd law is, with T the period and Mtot the total mass of the system:

T 2

a3
=

4�2

GMtot

1.3.5 The virial theorem

The virial theorem for one particle is:

hm~v � ~ri = 0) hT i = �1
2

D
~F � ~r

E
= 1

2

�
r
dU

dr

�
= 1

2n hU i if U = � k

rn

The virial theorem for a collection of particles is:

hT i = �1
2

* X
particles

~Fi � ~ri +
X
pairs

~Fij � ~rij
+

These propositions can also be written as: 2Ekin +Epot = 0.

1.4 Point dynamics in a moving coordinate system

1.4.1 Apparent forces

The total force in a moving coordinate system can be found by subtracting the apparent forces from
the forces working in the reference frame: ~F 0 = ~F � ~Fapp. The di�erent apparent forces are given
by:
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1. Transformation of the origin: For = �m~aa
2. Rotation: ~F� = �m~�� ~r 0

3. Coriolis force: Fcor = �2m~! � ~v

4. Centrifugal force: ~Fcf = m!2~rn 0 = �~Fcp ; ~Fcp = �mv
2

r
~er

1.4.2 Tensor notation

Transformation of the Newtonian equations of motion to x� = x�(x) gives:

dx�

dt
=
@x�

@�x�
d�x�

dt
;

The chain rule gives:

d

dt

dx�

dt
=
d2x�

dt2
=

d

dt

�
@x�

@�x�
d�x�

dt

�
=
@x�

@�x�
d2�x�

dt2
+
d�x�

dt

d

dt

�
@x�

@�x�

�
so:

d

dt

@x�

@�x�
=

@

@�x
@x�

@�x�
d�x

dt
=

@2x�

@�x�@�x
d�x

dt

This leads to:
d2x�

dt2
=
@x�

@�x�
d2�x�

dt2
+

@2x�

@�x�@�x
d�x

dt

�
d�x�

dt

�
Hence the Newtonian equation of motion

m
d2x�

dt2
= F�

will be transformed into:

m

�
d2x�

dt2
+ ���

dx�

dt

dx

dt

�
= F�

The apparent forces are taken from he origin to the e�ect side in the way ���
dx�

dt

dx

dt
.

1.5 Dynamics of masspoint collections

1.5.1 The centre of mass

The velocity w.r.t. the centre of mass ~R is given by ~v� _~R. The coordinates of the centre of mass are
given by:

~rm =

P
mi~riP
mi

In a 2-particle system, the coordinates of the centre of mass are given by:

~R =
m1~r1 +m2~r2
m1 +m2

With ~r = ~r1 � ~r2, the kinetic energy becomes: T = 1
2Mtot _R2 + 1

2� _r
2, with the reduced mass � given

by:
1

�
=

1

m1
+

1

m2
The motion within and outside the centre of mass can be separated:

_~Loutside = ~�outside ;
_~Linside = ~�inside

~p = m~vm ; ~Fext = m~am ; ~F12 = �~u
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1.5.2 Collisions

With collisions, where B are the coordinates of the collision and C an arbitrary other position, holds:
~p = m~vm is constant, and T = 1

2m~v
2
m is constant. The changes in the relative velocities can be

derived from: ~S = �~p = �(~vaft � ~vbefore). Further holds �~LC = ~CB � ~S, ~p k ~S =constant and ~L
w.r.t. B is constant.

1.6 Dynamics of rigid bodies

1.6.1 Moment of Inertia

The angular momentum in a moving coordinate system is given by:

~L0 = I~! + ~L0n

where I is the moment of inertia with respect to a central axis, which is given by:

I =
X
i

mi~ri
2 ; T 0 = Wrot =

1
2!Iij~ei~ej =

1
2I!

2

or, in the continuous case:

I =
m

V

Z
r0ndV =

Z
r0ndm

Further holds:
Li = Iij!j ; Iii = Ii ; Iij = Iji = �

X
k

mkx
0
ix
0
j

Steiner's theorem is: Iw:r:t:D = Iw:r:t:C +m(DM )2 if axis C k axis D.

Object I Object I

Cavern cylinder I = mR2 Massive cylinder I = 1
2mR

2

Disc, axis in plane disc through m I = 1
4mR

2 Halter I = 1
2�R

2

Cavern sphere I = 2
3mR

2 Massive sphere I = 2
5mR

2

Bar, axis ? through c.o.m. I = 1
12ml

2 Bar, axis ? through end I = 1
3ml

2

Rectangle, axis ? plane thr. c.o.m. I = 1
12(a

2 + b2) Rectangle, axis k b thr. m I = ma2

1.6.2 Principal axes

Each rigid body has (at least) 3 principal axes which stand ? to each other. For a principal axis
holds:

@I

@!x
=

@I

@!y
=

@I

@!z
= 0 so L0n = 0

The following holds: _!k = �aijk!i!j with aijk = Ii � Ij
Ik

if I1 � I2 � I3.

1.6.3 Time dependence

For torque of force ~� holds:

~� 0 = I �� ;
d00~L0

dt
= ~� 0 � ~! � ~L0

The torque ~T is de�ned by: ~T = ~F � ~d.
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1.7 Variational Calculus, Hamilton and Lagrange mechanics

1.7.1 Variational Calculus

Starting with:

�

bZ
a

L(q; _q; t)dt = 0 with �(a) = �(b) = 0 and �

�
du

dx

�
=

d

dx
(�u)

the equations of Lagrange can be derived:

d

dt

@L
@ _qi

=
@L
@qi

When there are additional conditions applying to the variational problem �J(u) = 0 of the type
K(u) =constant, the new problem becomes: �J(u)� ��K(u) = 0.

1.7.2 Hamilton mechanics

The Lagrangian is given by: L =PT ( _qi)�V (qi). The Hamiltonian is given by: H =
P

_qipi�L. In
2 dimensions holds: L = T � U = 1

2m( _r
2 + r2 _�2)� U (r; �).

If the used coordinates are canonical the Hamilton equations are the equations of motion for the
system:

dqi
dt

=
@H

@pi
;

dpi
dt

= �@H
@qi

Coordinates are canonical if the following holds: fqi; qjg = 0; fpi; pjg = 0; fqi; pjg = �ij where f; g
is the Poisson bracket:

fA;Bg =
X
i

�
@A

@qi

@B

@pi
� @A

@pi

@B

@qi

�
The Hamiltonian of a Harmonic oscillator is given by H(x; p) = p2=2m+ 1

2m!
2x2. With new coordi-

nates (�; I), obtained by the canonical transformation x =
p
2I=m! cos(�) and p = �p2Im! sin(�),

with inverse � = arctan(�p=m!x) and I = p2=2m! + 1
2m!x

2 it follows: H(�; I) = !I.

The Hamiltonian of a charged particle with charge q in an external electromagnetic �eld is given by:

H =
1

2m

�
~p� q ~A

�2
+ qV

This Hamiltonian can be derived from the Hamiltonian of a free particle H = p2=2m with the
transformations ~p! ~p�q ~A and H ! H�qV . This is elegant from a relativistic point of view: this is
equivalent to the transformation of the momentum 4-vector p� ! p�� qA�. A gauge transformation
on the potentialsA� corresponds with a canonical transformation, which make the Hamilton equations
the equations of motion for the system.

1.7.3 Motion around an equilibrium, linearization

For natural systems around equilibrium the following equations are valid:�
@V

@qi

�
0
= 0 ; V (q) = V (0) + Vikqiqk with Vik =

�
@2V

@qi@qk

�
0

With T = 1
2(Mik _qi _qk) one receives the set of equations M �q + V q = 0. If qi(t) = ai exp(i!t) is

substituted, this set of equations has solutions if det(V �!2M ) = 0. This leads to the eigenfrequencies

of the problem: !2k =
aTk V ak
aTkMak

. If the equilibrium is stable holds: 8k that !2k > 0. The general solution

is a superposition if eigenvibrations.
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1.7.4 Phase space, Liouville's equation

In phase space holds:

r =

 X
i

@

@qi
;
X
i

@

@pi

!
so r � ~v =

X
i

�
@

@qi

@H

@pi
� @

@pi

@H

@qi

�

If the equation of continuity, @t% +r � (%~v) = 0 holds, this can be written as:

f%;Hg+ @%

@t
= 0

For an arbitrary quantity A holds:
dA

dt
= fA;Hg+ @A

@t

Liouville's theorem can than be written as:

d%

dt
= 0 ; or:

Z
pdq = constant

1.7.5 Generating functions

Starting with the coordinate transformation:�
Qi = Qi(qi; pi; t)
Pi = Pi(qi; pi; t)

one can derive the following Hamilton equations with the new Hamiltonian K:

dQi

dt
=
@K

@Pi
;

dPi
dt

= � @K
@Qi

Now, a distinction between 4 cases can be made:

1. If pi _qi �H = PiQi �K(Pi; Qi; t)� dF1(qi; Qi; t)

dt
, the coordinates follow from:

pi =
@F1
@qi

; Pi =
@F1
@Qi

; K = H +
dF1
dt

2. If pi _qi �H = � _PiQi �K(Pi; Qi; t) +
dF2(qi; Pi; t)

dt
, the coordinates follow from:

pi =
@F2
@qi

; Qi =
@F2
@Pi

; K = H +
@F2
@t

3. If � _piqi �H = Pi _Qi �K(Pi; Qi; t) +
dF3(pi; Qi; t)

dt
, the coordinates follow from:

qi = �@F3
@pi

; Pi = �@F3
@Qi

; K = H +
@F3
@t

4. If � _piqi �H = �PiQi �K(Pi; Qi; t) +
dF4(pi; Pi; t)

dt
, the coordinates follow from:

qi = �@F4
@pi

; Qi =
@F4
@pi

; K = H +
@F4
@t

The functions F1, F2, F3 and F4 are called generating functions.



Chapter 2

Electricity & Magnetism

2.1 The Maxwell equations

The classical electromagnetic �eld can be described by the Maxwell equations. Those can be written
both as di�erential and integral equations:ZZ

 (~D � ~n)d2A = Qfree;included r � ~D = �freeZZ
 ( ~B � ~n)d2A = 0 r � ~B = 0I
~E � d~s = �d�

dt
r� ~E = �@

~B

@tI
~H � d~s = Ifree;included +

d	

dt
r� ~H = ~Jfree +

@ ~D

@t

For the uxes holds: 	 =

ZZ
(~D � ~n)d2A, � =

ZZ
( ~B � ~n)d2A.

The electric displacement ~D, polarization ~P and electric �eld strength ~E depend on each other
according to:

~D = "0 ~E + ~P = "0"r ~E, ~P =
P
~p0=Vol, "r = 1 + �e, with �e =

np20
3"0kT

The magnetic �eld strength ~H, the magnetization ~M and the magnetic ux density ~B depend on
each other according to:

~B = �0( ~H + ~M ) = �0�r ~H, ~M =
P

~m=Vol, �r = 1+ �m, with �m =
�0nm2

0

3kT

2.2 Force and potential

The force and the electric �eld between 2 point charges are given by:

~F12 =
Q1Q2

4�"0"rr2
~er ; ~E =

~F

Q

The Lorentzforce is the force which is felt by a charged particle that moves through a magnetic �eld.
The origin of this force is a relativistic transformation of the Coulomb force: ~FL = Q(~v� ~B) = l(~I� ~B).
The magnetic �eld in point P which results from an electric current is given by the law of Biot-Savart,
also known als the law of Laplace. In here, d~l k ~I and ~r points from d~l to P :

d ~BP =
�0I

4�r2
d~l � ~er

If the current is time-dependent one has to take retardation into account: the substitution I(t) !
I(t � r=c) has to be applied.

The potentials are given by: V12 = �
2Z

1

~E � d~s and ~A = 1
2
~B � ~r.

9
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Here, the freedom remains to apply a gauge transformation. The �elds can be derived from the
potentials as follows:

~E = �rV � @ ~A

@t
; ~B = r� ~A

Further holds the relation: c2 ~B = ~v � ~E.

2.3 Gauge transformations

The potentials of the electromagnetic �elds transform as follows when a gauge transformation is
applied: 8<

:
~A0 = ~A �rf
V 0 = V +

@f

@t

so the �elds ~E and ~B do not change. This results in a canonical transformation of the Hamiltonian.
Further, the freedom remains to apply a limiting condition. Two common choices are:

1. Lorentz-gauge: r � ~A +
1

c2
@V

@t
= 0. This separates the di�erential equations for ~A and V :

2V = � �

"0
, 2 ~A = ��0 ~J .

2. Coulomb gauge: r � ~A = 0. If � = 0 and ~J = 0 holds V = 0 and follows ~A from 2 ~A = 0.

2.4 Energy of the electromagnetic �eld

The energy density of the electromagnetic �eld is:

dW

dVol
= w =

Z
HdB +

Z
EdD

The energy density can be expressed in the potentials and currents as follows:

wmag = 1
2

Z
~J � ~Ad3x ; wel = 1

2

Z
�V d3x

2.5 Electromagnetic waves

2.5.1 Electromagnetic waves in vacuum

The wave equation 2	(~r; t) = �f(~r; t) has the general solution, with c = ("0�0)�1=2:

	(~r; t) =

Z
f(~r; t� j~r� ~r 0j=c)

4�j~r� ~r 0j d3r0

If this is written as: ~J(~r; t) = ~J(~r) exp(�i!t) and ~A(~r; t) = ~A(~r) exp(�i!t) with:

~A(~r) =
�

4�

Z
~J(~r 0)

exp(ikj~r � ~r 0j)
j~r � ~r 0j d3~r 0 ; V (~r) =

1

4�"

Z
�(~r 0)

exp(ikj~r � ~r 0j)
j~r � ~r 0j d3~r 0

A derivation via multipole expansion will show that for the radiated energy holds, if d; �� r:

dP

d

=

k2

32�2"0c

����
Z
J?(~r

0)ei
~k�~rd3r0

����2
The energy density of the electromagnetic wave of a vibrating dipole at a large distance is:

w = "0E
2 =

p20 sin
2(�)!4

16�2"0r2c4
sin2(kr � !t) ; hwit =

p20 sin
2(�)!4

32�2"0r2c4
; P =

ck4j~p j2
12�"0
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The radiated energy can be derived from the Poynting vector ~S: ~S = ~E� ~H = cW~ev. The irradiance
is the time-averaged of the Poynting vector: I = hj~Sjit. The radiation pressure ps is given by
ps = (1 + R)j~Sj=c, where R is the coe�cient of reection.

2.5.2 Electromagnetic waves in matter

The wave equations in matter, with cmat = ("�)�1=2 are:�
r2 � "� @

2

@t2
� �

�

@

@t

�
~E = 0 ;

�
r2 � "� @

2

@t2
� �

�

@

@t

�
~B = 0

give, after substitution of monochromatic plane waves: ~E = E exp(i(~k � ~r� !t)) and ~B = B exp(i(~k �
~r � !t)) the dispersion relation:

k2 = "�!2 +
i�!

�

The �rst term arises from the displacement current, the second from the conductance current. If k is
written as k := k0 + ik00 it follows:

k0 = !
q

1
2"�

vuut1 +

s
1 +

1

(�"!)2
and k00 = !

q
1
2"�

vuut�1 +
s
1 +

1

(�"!)2

This results in a damped wave: ~E = E exp(�k00~n � ~r) exp(i(k0~n � ~r � !t)). If the material is a good

conductor, the wave vanishes after approximately one wavelength, k = (1 + i)

r
�!

2�
.

2.6 Multipoles

Because
1

j~r � ~r 0j =
1

r

1X
0

�
r0

r

�l
Pl(cos �) the potential can be written as: V =

Q

4�"

X
n

kn
rn

For the lowest-order terms this results in:

� Monopole: l = 0, k0 =
R
�dV

� Dipole: l = 1, k1 =
R
r cos(�)�dV

� Quadrupole: l = 2, k2 = 1
2

P
i
(3z2i � r2i )

1. The electric dipole: dipole moment: ~p = Ql~e, where ~e goes from � to 	, and ~F = (~p � r)~Eext,
and W = �~p � ~Eout.

Electric �eld: ~E � Q

4�"r3

�
3~p � ~r
r2
� ~p
�
. The torque is: ~� = ~p� ~Eout

2. The magnetic dipole: dipole moment: if r�pA: ~� = ~I � (A~e?), ~F = (~� � r) ~Bout

j�j = mv2?
2B

, W = �~�� ~Bout

Magnetic �eld: ~B =
��
4�r3

�
3� � ~r
r2
� ~�
�
. The moment is: ~� = ~� � ~Bout

2.7 Electric currents

The continuity equation for charge is:
@�

@t
+r � ~J = 0. The electric current is given by:

I =
dQ

dt
=

ZZ
( ~J � ~n)d2A
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For most conductors holds: ~J = ~E=�, where � is the resistivity.

If the ux enclosed by a conductor changes this results in an induced voltage Vind = �N d�

dt
. If

the current owing through a conductor changes, this results in a self-inductance which opposes the

original change: Vsel�nd = �LdI
dt
. If a conductor encloses a ux � holds: � = LI.

The magnetic induction within a coil is approximated by: B =
�NIp
l2 + 4R2

where l is the length, R

the radius and N the number of coils. The energy contained within a coil is given by W = 1
2LI

2 and
L = �N2A=l.

The capacity is de�ned by: C = Q=V . For a capacitor holds: C = "0"rA=d where d is the distance
between the plates and A the surface of one plate. The electric �eld strength between the plates is
E = �="0 = Q="0A where � is the surface charge. The accumulated energy is given by W = 1

2CV
2.

The current through a capacity is given by I = �C dV
dt

.

For most PTC resistors holds approximately: R = R0(1 + �T ), where R0 = �l=A. For a NTC holds:
R(T ) = C exp(�B=T ) where B and C depend only on the material.

If a current ows through two di�erent, connecting conductors x and y, the contact area will heat up
or cool down, depending on the direction of the current: the Peltier e�ect. The generated or removed
heat is given by: W = �xyIt. This e�ect can be ampli�ed with semiconductors.

The thermic voltage between 2 metals is given by: V = (T �T0). For a Cu-Konstantane connection
holds:  � 0:2� 0:7 mV/K.

In an electrical net with only stationary currents, Kirchho�'s equations apply: for a knot holds:P
In = 0, along a closed path holds:

P
Vn =

P
InRn = 0.

2.8 Depolarizing �eld

If a dielectric material is placed in an electric or magnetic �eld, the �eld strength within and outside
the material will change because the material will be polarized or magnetized. If the medium has an
ellipsoidal shape and one of the principal axes is parallel with the external �eld ~E0 or ~B0 then the
depolarizing is �eld homogeneous.

~Edep = ~Emat � ~E0 = �N
~P

"0
~Hdep = ~Hmat � ~H0 = �N ~M

N is a constant depending only on the shape of the object placed in the �eld, with 0 � N � 1. For
a few limiting cases of an ellipsoid holds: a thin plane: N = 1, a long, thin bar: N = 0, a sphere:
N = 1

3 .

2.9 Mixtures of materials

The average electric displacement in a material which is inhomogenious on a mesoscopic scale is given

by: hDi = h"Ei = "� hEi where "� = "1

�
1� �2(1� x)

�("�="2)

��1
where x = "1="2. For a sphere holds:

� = 1
3 +

2
3x. Further holds:  X

i

�i
"i

!�1
� "� �

X
i

�i"i



Chapter 3

Relativity

3.1 Special relativity

3.1.1 The Lorentz transformation

The Lorentz transformation (~x0; t0) = (~x0(~x; t); t0(~x; t)) leaves the wave equation invariant if c is
invariant:

@2

@x2
+

@2

@y2
+

@2

@z2
� 1

c2
@2

@t2
=

@2

@x02
+

@2

@y02
+

@2

@z02
� 1

c2
@2

@t02

This transformation can also be found when ds2 = ds02 is demanded. The general form of the Lorentz
transformation is given by:

~x0 = ~x+
( � 1)(~x � ~v)~v

jvj2 � ~vt ; t0 =
(t � ~x � ~v)

c2

where

 =
1r

1� v2

c2

The velocity di�erence ~v 0 between two observers transforms according to:

~v 0 =

�


�
1� ~v1 � ~v2

c2

���1�
~v2 + ( � 1)

~v1 � ~v2
v21

~v1 � ~v1
�

If the velocity is parallel to the x-axis, this becomes y0 = y, z0 = z and:

x0 = (x � vt) ; x = (x0 + vt0)

t0 = 
�
t� xv

c2

�
; t = 

�
t0 +

x0v

c2

�
; v0 =

v2 � v1
1� v1v2

c2

If ~v = v~ex holds:

p0x = 

�
px � �W

c

�
; W 0 = (W � vpx)

With � = v=c the electric �eld of a moving charge is given by:

~E =
Q

4�"0r2
(1� �2)~er

(1� �2 sin2(�))3=2

The electromagnetic �eld transforms according to:

~E0 = (~E + ~v � ~B) ; ~B0 = 

 
~B � ~v �

~E

c2

!

Length, mass and time transform according to: �tr = �t0, mr = m0, lr = l0=, with 0 the
quantities in a co-moving reference frame and r the quantities in a frame moving with velocity v
w.r.t. it. The proper time � is de�ned as: d�2 = ds2=c2, so �� = �t=. For energy and momentum

13
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holds: W = mrc2 = W0, W 2 = m2
0c
4 + p2c2. p = mrv = m0v = Wv=c2, and pc = W� where

� = v=c. The force is de�ned by ~F = d~p=dt.

4-vectors have the property that their modulus is independent of the observer: their components
can change after a coordinate transformation but not their modulus. The di�erence of two 4-vectors

transforms also as a 4-vector. The 4-vector for the velocity is given by U� =
dx�

d�
. The relation with

the \common" velocity ui := dxi=dt is: U� = (ui; ic). For particles with nonzero restmass holds:
U�U� = �c2, for particles with zero restmass (so with v = c) holds: U�U� = 0. The 4-vector for
energy and momentum is given by: p� = m0U� = (pi; iW=c). So: p�p� = �m2

0c
2 = p2 �W 2=c2.

3.1.2 Red and blue shift

There are three causes of red and blue shifts:

1. Motion: with ~ev � ~er = cos(') follows:
f 0

f
= 

�
1� v cos(')

c

�
.

This can give both red- and blueshift, also ? to the direction of motion.

2. Gravitational redshift:
�f

f
=
�M

rc2
.

3. Redshift because the universe expands, resulting in e.g. the cosmic background radiation:
�0
�1

=
R0

R1
.

3.1.3 The stress-energy tensor and the �eld tensor

The stress-energy tensor is given by:

T�� = (%c2 + p)u�u� + pg�� +
1

c2
�
F��F

�
� + 1

4g��F
��F��

�
The conservation laws can than be written as: r�T�� = 0. The electromagnetic �eld tensor is given
by:

F�� =
@A�
@x�

� @A�
@x�

with A� := ( ~A; iV=c) and J� := ( ~J; ic�). The Maxwell equations can than be written as:

@�F
�� = �0J

� ; @�F�� + @�F�� + @�F�� = 0

The equations of motion for a charged particle in an EM �eld become with the �eld tensor:

dp�
d�

= qF��u
�

3.2 General relativity

3.2.1 Riemannian geometry, the Einstein tensor

The basic principles of general relativity are:

1. The geodesic postulate: free falling particles move along geodesics of space-time with the proper
time � or arc length s as parameter. For particles with zero rest mass (photons), the use of a
free parameter is required because for them holds ds = 0. From �

R
ds = 0 the equations of

motion can be derived:
d2x�

ds2
+ ���

dx�

ds

dx

ds
= 0
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2. The principle of equivalence: inertial mass � gravitational mass ) gravitation is equivalent
with a curved space-time were particles move along geodesics.

3. By a proper choice of the coordinate system it is possible to make the metric locally at in each
point xi: g��(xi) = ��� :=diag(�1; 1; 1; 1).

The Riemann tensor is de�ned as: R�
���T

� := r�r�T� �r�r�T �, where the covariant derivative

is given by rjai = @jai + �ijka
k and rjai = @jai � �kijak. Here,

�ijk =
@2�xl

@xj@xk
@xi

@�xl
= 1

2g
il(@kglj + @jglk � @lgjk)

are the Christo�el symbols. For a second-order tensor holds: [r�;r�]T�� = R�
���T

�
� + R�

���T
�
� ,

rkaij = @kaij � �lkja
i
l + �ikla

l
j, rkaij = @kaij � �lkialj � �lkjajl and rkaij = @kaij + �ikla

lj + �jkla
il.

The following holds: R�
��� = @����� � @����� + �����

�
�� � �����

�
��.

The Ricci tensor is a contraction of the Riemann tensor: R�� := R�
���, which is symmetric: R�� =

R��. The Bianchi identities are: r�R���� +r�R���� +r�R���� = 0.

The Einstein tensor is given by: G�� := R�� � 1
2g

��R, where R := R�
� is the Ricci scalar, for which

holds: r�G�� = 0. With the variational principle �
R
(L(g��)�Rc2=16��)

pjgjd4x = 0 for variations
g�� ! g�� + �g�� the Einstein �eld equations can be derived:

G�� =
8��

c2
T�� , which can also be written as R�� =

8��

c2
(T�� � 1

2g��T
�
� )

For empty space this is equivalent to R�� = 0. The equation R���� = 0 has as only solution a at
space.

The Einstein equations are 10 independent equations, which are of second order in g��. From this,
the Laplace equation from Newtonian gravitation can be derived by stating: g�� = ��� + h�� , where
jhj � 1. In the stationary case, this results in r2h00 = 8��%=c2.

The most general form of the �eld equations is: R�� � 1
2g��R+�g�� =

8��

c2
T��

where � is the cosmological constant. This constant plays a role in inatory models of the universe.

3.2.2 The line element

The metric tensor is given by: gij =
X
k

@�xk

@xi
@�xk

@xj
.

In general holds: ds2 = g��dx�dx�. In special relativity this becomes ds2 = �c2dt2+dx2+dy2+dz2.
This metric, ��� :=diag(�1; 1; 1; 1), is called the Minkowski metric.

The external Schwarzschild metric applies in vacuum outside a spherical mass distribution, and is
given by:

ds2 =

�
�1 + 2m

r

�
c2dt2 +

�
1� 2m

r

��1
dr2 + r2d
2

Here, m := M�=c2 is the geometrical mass of an object with mass M , and d
2 = d�2 + sin2 �d'2.
This metric is singular for r = 2m = 2�M=c2. If an object is smaller than its event horizon 2m, that
implies that its escape velocity is > c, it is called a black hole. The Newtonian limit of this metric is
given by:

ds2 = �(1 + 2V )c2dt2 + (1� 2V )(dx2 + dy2 + dz2)

where V = ��M=r is the Newtonian gravitation potential. In general relativity, the components of
g�� are associated with the potentials and the derivatives of g�� with the �eld strength.

The Kruskal-Szekeres coordinates are used to solve certain problems with the Schwarzschild metric
near r = 2m. They are de�ned by:
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� r > 2m: 8>>>><
>>>>:

u =

r
r

2m
� 1 exp

� r

4m

�
cosh

�
t

4m

�

v =

r
r

2m
� 1 exp

� r

4m

�
sinh

�
t

4m

�
� r < 2m: 8>>>><

>>>>:
u =

r
1� r

2m
exp

� r

4m

�
sinh

�
t

4m

�

v =

r
1� r

2m
exp

� r

4m

�
cosh

�
t

4m

�
� r = 2m: here, the Kruskal coordinates are singular, which is necessary to eliminate the coordi-
nate singularity there.

The line element in these coordinates is given by:

ds2 = �32m
3

r
e�r=2m(dv2 � du2) + r2d
2

The line r = 2m corresponds to u = v = 0, the limit x0 !1 with u = v and x0 !�1 with u = �v.
The Kruskal coordinates are only singular on the hyperbole v2�u2 = 1, this corresponds with r = 0.
On the line dv = �du holds d� = d' = ds = 0.

For the metric outside a rotating, charged spherical mass the Newman metric applies:

ds2 =

�
1� 2mr � e2

r2 + a2 cos2 �

�
c2dt2 �

�
r2 + a2 cos2 �

r2 � 2mr + a2 � e2
�
dr2 � (r2 + a2 cos2 �)d�2 ��

r2 + a2 +
(2mr � e2)a2 sin2 �
r2 + a2 cos2 �

�
sin2 �d'2 +

�
2a(2mr � e2)
r2 + a2 cos2 �

�
sin2 �(d')(cdt)

where m = �M=c2, a = L=Mc and e = �Q="0c
2.

A rotating charged black hole has an event horizon with RS = m +
p
m2 � a2 � e2.

Near rotating black holes frame dragging occurs because gt' 6= 0. For the Kerr metric (e = 0, a 6= 0)
then follows that within the surface RE = m+

p
m2 � a2 cos2 � (de ergosphere) no particle can be at

rest.

3.2.3 Planetary orbits and the perihelium shift

To �nd a planetary orbit, the variational problem �
R
ds = 0 has to be solved. This is equivalent to

the problem �
R
ds2 = �

R
gijdxidxj = 0. Substituting the external Schwarzschild metric yields for a

planetary orbit:
du

d'

�
d2u

d'2
+ u

�
=
du

d'

�
3mu+

m

h2

�
where u := 1=r and h = r2 _' =constant. The term 3mu is not present in the classical solution. This

term can in the classical case also be found from a potential V (r) = ��M
r

�
1 +

h2

r2

�
.

The orbital equation gives r =constant as solution, or can, after dividing by du=d', be solved with
perturbation theory. In zeroth order, this results in an elliptical orbit: u0(') = A + B cos(') with
A = m=h2 and B an arbitrary constant. In �rst order, this becomes:

u1(') = A+ B cos('� "') + "

�
A+

B2

2A
� B2

6A
cos(2')

�
where " = 3m2=h2 is small. The perihelion of a planet is the point for which r is minimal, or u
maximal. This is the case if cos('� "') = 0) ' � 2�n(1+ "). For the perihelion shift then follows:
�' = 2�" = 6�m2=h2 per orbit.
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3.2.4 The trajectory of a photon

For the trajectory of a photon (and for each particle with zero restmass) holds ds2 = 0. Substituting
the external Schwarzschild metric results in the following orbital equation:

du

d'

�
d2u

d'2
+ u� 3mu

�
= 0

3.2.5 Gravitational waves

Starting with the approximation g�� = ��� + h�� for weak gravitational �elds and the de�nition
h0�� = h�� � 1

2���h
�
� it follows that 2h0�� = 0 if the gauge condition @h0��=@x

� = 0 is satis�ed. From
this, it follows that the loss of energy of a mechanical system, if the occurring velocities are � c and
for wavelengths � the size of the system, is given by:

dE

dt
= � G

5c5

X
i;j

�
d3Qij

dt3

�2

with Qij =
R
%(xixj � 1

3�ijr
2)d3x the mass quadrupole moment.

3.2.6 Cosmology

If for the universe as a whole is assumed:

1. There exists a global time coordinate which acts as x0 of a Gaussian coordinate system,

2. The 3-dimensional spaces are isotrope for a certain value of x0,

3. Each point is equivalent to each other point for a �xed x0.

then the Robertson-Walker metric can be derived for the line element:

ds2 = �c2dt2 + R2(t)

r20

�
1� kr2

4r20

� (dr2 + r2d
2)

For the scalefactor R(t) the following equations can be derived:

2 �R

R
+

_R2 + kc2

R2
= �8��p

c2
+ � and

_R2 + kc2

R2
=

8��%

3
+
�

3

where p is the pressure and % the density of the universe. If � = 0 can be derived for the deceleration
parameter q:

q = �
�RR
_R2

=
4��%

3H2

where H = _R=R is Hubble's constant. This is a measure of the velocity with which galaxies far away
are moving away from each other, and has the value � (75�25) km�s�1�Mpc�1. This gives 3 possible
conditions for the universe (here, W is the total amount of energy in the universe):

1. Parabolical universe: k = 0, W = 0, q = 1
2 . The expansion velocity of the universe ! 0 if

t!1. The hereto related density %c = 3H2=8�� is the critical density.

2. Hyperbolical universe: k = �1, W < 0, q < 1
2 . The expansion velocity of the universe remains

positive forever.

3. Elliptical universe: k = 1, W > 0, q > 1
2 . The expansion velocity of the universe becomes

negative after some time: the universe starts collapsing.



Chapter 4

Oscillations

4.1 Harmonic oscillations

The general form of a harmonic oscillation is: 	(t) = 	̂ei(!t�') � 	̂ cos(!t � '),
where 	̂ is the amplitude. A superposition of several harmonic oscillations with the same frequency
results in another harmonic oscillation:X

i

	̂i cos(�i � !t) = �̂ cos(� � !t)

with:

tan(�) =

P
i
	̂i sin(�i)P

i
	̂i cos(�i)

and �̂2 =
X
i

	̂2
i + 2

X
j>i

X
i

	̂i	̂j cos(�i � �j)

For harmonic oscillations holds:

Z
x(t)dt =

x(t)

i!
and

dnx(t)

dtn
= (i!)nx(t).

4.2 Mechanic oscillations

For a construction with a spring with constant C parallel to a damping k which is connected to
a mass M , to which a periodic force F (t) = F̂ cos(!t) is applied holds the equation of motion
m�x = F (t) � k _x � Cx. With complex amplitudes, this becomes �m!2x = F � Cx � ik!x. With
!20 = C=m follows:

x =
F

m(!20 � !2) + ik!
; and for the velocity holds: _x =

F

i
p
Cm� + k

where � =
!

!0
� !0
!
. The quantity Z = F= _x is called the impedance of the system. The quality of the

system is given by Q =

p
Cm

k
.

The frequency with minimal jZj is called velocity resonance frequency. This is equal to !0. In the
resonance curve jZj=pCm is plotted against !=!0. The width of this curve is characterized by the
points where jZ(!)j = jZ(!0)j

p
2. In these points holds: R = X and � = �Q�1, and the width is

2�!B = !0=Q.

The sti�ness of an oscillating system is given by F=x. The amplitude resonance frequency !A is the

frequency where i!Z is minimal. This is the case for !A = !0
q
1� 1

2Q
2.

The damping frequency !D is a measure for the time in which an oscillating system comes to rest. It

is given by !D = !0

r
1� 1

4Q2 . A weak damped oscillation (k2 < 4mC) dies out after TD = 2�=!D.

For a critical damped oscillation (k2 = 4mC) holds !D = 0. A strong damped oscillation (k2 > 4mC)
drops like (if k2 � 4mC) x(t) � x0 exp(�t=� ).

18
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4.3 Electric oscillations

The impedance is given by: Z = R + iX. The phase angle is ' := arctan(X=R). The impedance of
a resistor is R, of a capacitor 1=i!C and of a self inductor i!L. The quality of a coil is Q = !L=R.
The total impedance in case several elements are positioned is given by:

1. Series connection: V = IZ,

Ztot =
X
i

Zi ; Ltot =
X
i

Li ;
1

Ctot
=
X
i

1

Ci
; Q =

Z0
R

; Z = R(1 + iQ�)

2. parallel connection: V = IZ,

1

Ztot
=
X
i

1

Zi
;

1

Ltot
=
X
i

1

Li
; Ctot =

X
i

Ci ; Q =
R

Z0
; Z =

R

1 + iQ�

Here, Z0 =

r
L

C
and !0 =

1p
LC

.

The power given by a source is given by P (t) = V (t) � I(t), so hP it = V̂e� Îe� cos(��)

= 1
2 V̂ Î cos(�v � �i) = 1

2 Î
2Re(Z) = 1

2 V̂
2Re(1=Z), where cos(��) is the work factor.

4.4 Waves in long conductors

These cables are in use for signal transfer, e.g. coax cable. For them holds: Z0 =

r
dL

dx

dx

dC
.

The transmission velocity is given by v =

r
dx

dL

dx

dC
.

4.5 Coupled conductors and transformers

For two coils enclosing each others ux holds: if �12 is the part of the ux originating from I2 through
coil 2 which is enclosed by coil 1, than holds �12 =M12I2, �21 =M21I1. For the coe�cients of mutual
induction Mij holds:

M12 =M21 :=M = k
p
L1L2 =

N1�1

I2
=
N2�2

I1
� N1N2

where 0 � k � 1 is the coupling factor. For a transformer is k � 1. At full load holds:

V1
V2

=
I2
I1

= � i!M

i!L2 +Rload
� �

r
L1
L2

= �N1

N2

4.6 Pendulums

The oscillation time T = 1=f , and for di�erent types of pendulums is given by:

� Oscillating spring: T = 2�
p
m=C if the spring force is given by F = C ��l.

� Physical pendulum: T = 2�
p
I=� with � the moment of force and I the moment of inertia.

� Torsion pendulum: T = 2�
p
I=� with � =

2lm

�r4�'
the constant of torsion and I the moment

of inertia.

� Mathematical pendulum: T = 2�
p
l=g with g the acceleration of gravity and l the length of

the pendulum.
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Waves

5.1 The wave equation

The general form of the wave equation is: 2u = 0, or:

r2u� 1

v2
@2u

@t2
=
@2u

@x2
+
@2u

@y2
+
@2u

@z2
� 1

v2
@2u

@t2
= 0

where u is the disturbance and v the propagation velocity. In general holds: v = f�. By de�nition
holds: k� = 2� and ! = 2�f .

In principle, there are two types of waves:

1. Longitudinal waves: for these holds ~k k ~v k ~u.
2. Transversal waves: for these holds ~k k ~v ? ~u.

The phase velocity is given by vph = !=k. The group velocity is given by:

vg =
d!

dk
= vph + k

dvph
dk

= vph

�
1� k

n

dn

dk

�
where n is the refractive index of the medium. If vph does not depend on ! holds: vph = vg. In a
dispersive medium it is possible that vg > vph or vg < vph, and vg � vf = c2. If one wants to transfer
information with a wave, e.g. by modulation of an EM wave, the information travels with the velocity
at with a change in the electromagnetic �eld propagates. This velocity is often almost equal to the
group velocity.

For some media, the propagation velocity follows from:

� Pressure waves in a liquid or gas: v =
p
�=%, where � is the modulus of compression.

� For pressure waves in a gas also holds: v =
p
p=% =

p
RT=M .

� Pressure waves in a solid bar: v =
p
E=%

� waves in a string: v =
p
Fspanl=m

� Surface waves on a liquid: v =

s�
g�

2�
+
2�

%�

�
tanh

�
2�h

�

�
where h is the depth of the liquid and  the surface tension. If h� � holds: v � pgh.

5.2 Solutions of the wave equation

5.2.1 Plane waves

In n dimensions a harmonic plane wave is de�ned by:

u(~x; t) = 2nû cos(!t)
nX
i=1

sin(kixi)

20
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The equation for a harmonic traveling plane wave is: u(~x; t) = û cos(~k � ~x� !t + ')

If waves reect at the end of a spring this will result in a change in phase. A �xed end gives a phase
change of �=2 to the reected wave, with boundary condition u(l) = 0. A lose end gives no change
in the phase of the reected wave, with boundary condition (@u=@x)l = 0.

If an observer is moving w.r.t. the wave with a velocity vobs, he will observe a change in frequency:

the Doppler e�ect. This is given by:
f

f0
=
vf � vobs

vf
.

5.2.2 Spherical waves

When the situation is spherical symmetric, the homogeneous wave equation is given by:

1

v2
@2(ru)

@t2
� @2(ru)

@r2
= 0

with general solution:

u(r; t) = C1
f(r � vt)

r
+ C2

g(r + vt)

r

5.2.3 Cylindrical waves

When the situation has a cylindrical symmetry, the homogeneous wave equation becomes:

1

v2
@2u

@t2
� 1

r

@

@r

�
r
@u

@r

�
= 0

This is a Bessel equation, with solutions which can be written as Hankel functions. For su�cient
large values of r these are approximated by:

u(r; t) =
ûp
r
cos(k(r � vt))

5.2.4 The general solution in one dimension

Starting point is the equation:

@2u(x; t)

@t2
=

NX
m=0

�
bm

@m

@xm

�
u(x; t)

where bm 2 IR. Substituting u(x; t) = Aei(kx�!t) gives two solutions !j = !j(k) as dispersion
relations. The general solution is given by:

u(x; t) =

1Z
�1

�
a(k)ei(kx�!1(k)t) + b(k)ei(kx�!2(k)t)

�
dk

Because in general the frequencies !j are non-linear in k there is dispersion and the solution cannot
be written any more as a sum of functions depending only on x� vt: the wave front transforms.

5.3 The stationary phase method

Usually the Fourier integrals of the previous section cannot be calculated exactly. If !j(k) 2 IR the
stationary phase method can be applied. Assuming that a(k) is only a slowly varying function of k,
one can state that the parts of the k-axis where the phase of kx�!(k)t changes rapidly will give no net
contribution to the integral because the exponent oscillates rapidly there. The only areas contributing
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signi�cantly to the integral are areas with a stationary phase, determined by
d

dk
(kx � !(k)t) = 0.

Now the following approximation is possible:

1Z
�1

a(k)ei(kx�!(k)t)dk �
NX
i=1

vuut 2�
d2!(ki)
dk2i

exp
��i14� + i(kix� !(ki)t)

�

5.4 Green functions for the initial-value problem

This method is preferable if the solutions deviate much from the stationary solutions, like point-like
excitations. Starting with the wave equation in one dimension, with r2 = @2=@x2 holds: if Q(x; x0; t)

is the solution with initial values Q(x; x0; 0) = �(x � x0) and
@Q(x; x0; 0)

@t
= 0, and P (x; x0; t) the

solution with initial values P (x; x0; 0) = 0 and
@P (x; x0; 0)

@t
= �(x� x0), then the solution of the wave

equation with arbitrary initial conditions f(x) = u(x; 0) and g(x) =
@u(x; 0)

@t
is given by:

u(x; t) =

1Z
�1

f(x0)Q(x; x0; t)dx0+

1Z
�1

g(x0)P (x; x0; t)dx0

P and Q are called the propagators. They are de�ned by:

Q(x; x0; t) = 1
2 [�(x� x0 � vt) + �(x� x0 + vt)]

P (x; x0; t) =

( 1

2v
if jx� x0j < vt

0 if jx� x0j > vt

Further holds the relation: Q(x; x0; t) =
@P (x; x0; t)

@t

5.5 Waveguides and resonating cavities

The boundary conditions for a perfect conductor can be derived from the Maxwell equations. If ~n is
a unit vector ? the surface, pointed from 1 to 2, and ~K is a surface current density, than holds:

~n � (~D2 � ~D1) = � ~n� (~E2 � ~E1) = 0
~n � ( ~B2 � ~B1) = 0 ~n� ( ~H2 � ~H1) = ~K

In a waveguide holds because of the cylindrical symmetry: ~E(~x; t) = ~E(x; y)ei(kz�!t) and ~B(~x; t) =
~B(x; y)ei(kz�!t). From this one can now deduce that, if Bz and Ez are not � 0:

Bx = i

"�!2 � k2
�
k
@Bz
@x
� "�!@Ez

@y

�
By = i

"�!2 � k2
�
k
@Bz
@y

+ "�!
@Ez
@x

�
Ex = i

"�!2 � k2
�
k
@Ez
@x

+ "�!
@Bz
@y

�
Ey = i

"�!2 � k2
�
k
@Ez
@y
� "�!@Bz

@x

�
Now one can distinguish between three cases:

1. Bz � 0: the Transversal Magnetic modes (TM). Boundary condition: Ezjsurf = 0.

2. Ez � 0: the Transversal Electric modes (TE). Boundary condition:
@Bz
@n

����
surf

= 0.

For the TE and TM modes this gives an eigenvalue problem for Ez resp. Bz with boundary
conditions: �

@2

@x2
+

@2

@y2

�
 = �2 with eigenvalues 2 := "�!2 � k2
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This gives a discrete solution  ` with eigenvalue 2` : k =
p
"�!2 � 2` . For ! < !`, k is

imaginary and the wave is damped. Therefore, !` is called the cut-o� frequency. In rectangular
conductors the following expression can be found for the cut-o� frequency for modes TEm;n of
TMm;n:

�` =
2p

(m=a)2 + (n=b)2

3. Ez and Bz are zero everywhere: the Transversal electromagnetic mode (TEM). Than holds:
k = �!p"� and vf = vg, just as if here were no waveguide. Further k 2 IR, so there exists no
cut-o� frequency.

In a rectangular, 3 dimensional resonating cavity with edges a, b and c the possible wave numbers

are given by: kx =
n1�

a
; ky =

n2�

b
; kz =

n3�

c
This results in the possible frequencies f = vk=2�

in the cavity:

f =
v

2

r
n2x
a2

+
n2y
b2

+
n2z
c2

For a cubic cavity, with a = b = c, the possible number of oscillating modes NL for longitudinal waves
is given by:

NL =
4�a3f3

3v3

Because transversal waves have two possible polarizations holds for them: NT = 2NL.

5.6 Non-linear wave equations

The Van der Pol equation is given by:

d2x

dt2
� "!0(1� �x2)dx

dt
+ !20x = 0

�x2 can be ignored for very small values of the amplitude. Substitution of x � ei!t gives: ! =
1
2!0(i"� 2

q
1� 1

2"
2). The lowest-order instabilities grow as 1

2"!0. While x is growing, the 2nd term

becomes larger and diminishes the growth. Oscillations on a time scale � !�10 can exist. If x is
expanded as x = x(0) + "x(1) + "2x(2) + � � � and this is substituted one obtains, besides periodic,
secular terms � "t. If it is assumed that there exist timescales �n, 0 � � � N with @�n=@t = "n and
if the secular terms are put 0 one obtains:

d

dt

(
1

2

�
dx

dt

�2
+ 1

2!
2
0x

2

)
= "!0(1� �x2)

�
dx

dt

�2
This is an energy equation. Energy is conserved if the left-hand side is 0. If x2 > 1=�, the right-hand
side changes sign and an increase in energy changes into a decrease of energy. This mechanism limits
the growth of oscillations.

The Korteweg-De Vries equation is given by:

@u

@t
+
@u

@x
� au

@u

@x| {z }
non�lin

+ b2
@3u

@x3| {z }
dispersive

= 0

This equation is for example a model for ion-acoustic waves in a plasma. For this equation, soliton
solutions of the following form exist:

u(x� ct) = �d
cosh2(e(x� ct))

with c = 1 + 1
3ad and e

2 = ad=(12b2).
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Optics

6.1 The bending of light

For the refraction at a surface holds: ni sin(�i) = nt sin(�t) where n is the refractive index of the
material. Snell's law is:

n2
n1

=
�1
�2

=
v1
v2

If �n � 1, the change in phase of the light is �' = 0, if �n > 1 holds: �' = �. The refraction of
light in a material is caused by scattering from atoms. This is described by:

n2 = 1 +
nee

2

"0m

X
j

fj
!20;j � !2 � i�!

where ne is the electron density and fj the oscillator strength, for which holds:
P
j
fj = 1. From

this follows that vg = c=(1 + (nee2=2"0m!2)). From this the equation of Cauchy can be derived:

n = a0 + a1=�
2. More general, it is possible to expand n as: n =

nX
k=0

ak
�2k

.

For an electromagnetic wave in general holds: n =
p
"r�r.

The path, followed by a light ray in material can be found from Fermat's principle:

�

2Z
1

dt = �

2Z
1

n(s)

c
ds = 0) �

2Z
1

n(s)ds = 0

6.2 Paraxial geometrical optics

6.2.1 Lenses

The Gaussian lens formula can be deduced from Fermat's principle with the approximations cos' = 1
and sin' = '. For the refraction at a spherical surface with radius R holds:

n1
v
� n2

b
=
n1 � n2
R

where jvj is the distance of the object and jbj the distance of the image. Applying this twice results
in:

1

f
= (nl � 1)

�
1

R2
� 1

R1

�
where nl is the refractive index of the lens, f is the focal length and R1 and R2 are the curvature
radii of both surfaces. For a double concave lens holds R1 < 0, R2 > 0, for a double convex lens holds
R1 > 0 and R2 < 0. Further holds:

1

f
=

1

v
� 1

b

D := 1=f is called the dioptric power of a lens. For a lens with thickness d and diameter D holds to
a good approximation: 1=f = 8(n� 1)d=D2. For two lenses placed on a line with distance d holds:

1

f
=

1

f1
+

1

f2
� d

f1f2

24
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In these equations the following signs are being used for refraction at a spherical surface, as is seen
by an incoming light ray:

Quantity + �
R Concave surface Convex surface
f Converging lens Diverging lens
v Real object Virtual object
b Virtual image Real image

6.2.2 Mirrors

For images of mirrors holds:
1

f
=

1

v
+
1

b
=

2

R
+
h2

2

�
1

R
� 1

v

�2
where h is the perpendicular distance from the point the light ray hits the mirror to the optical
axis. Spherical aberration can be reduced by not using spherical mirrors. A parabolical mirror has
no spherical aberration for light rays parallel with the optical axis and is therefore often used for
telescopes. The used signs are:

Quantity + �
R Concave mirror Convex mirror
f Concave mirror Convex mirror
v Real object Virtual object
b Real image Virtual image

6.2.3 Principal planes

The nodal points N of a lens are de�ned by the �gure on the right. If the
lens is surrounded by the same medium on both sides, the nodal points are
the same as the principal points H. The plane ? the optical axis through
the principal points is called the principal plane. If the lens is described by
a matrix mij than for the distances h1 and h2 to the boundary of the lens
holds:

h1 = n
m11 � 1

m12
; h2 = n

m22 � 1

m12

r rr
N1

N2O

6.2.4 Magni�cation

The linear magni�cation is de�ned by: N = � b
v

The angular magni�cation is de�ned by: N� = � �syst
�none

where �sys is the size of the retinal image with the optical system and �none the size of the retinal
image without the system. Further holds: N �N� = 1. For a telescope holds: N = fobjective=focular.
The f-number is de�ned by f=Dobjective.

6.3 Matrix methods

A light ray can be described by a vector (n�; y) with � the angle with the optical axis and y the
distance to the optical axis. The change of a light ray interacting with an optical system can be
obtained using a matrix multiplication:�

n2�2
y2

�
=M

�
n1�1
y1

�
where Tr(M ) = 1. M is a product of elementary matrices. These are:
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1. Transfer along length l: MR =

�
1 0
l=n 1

�

2. Refraction at a surface with dioptric power D: MT =

�
1 �D
0 1

�

6.4 Aberrations

Lenses usually do not give a perfect image. Some causes are:

1. Chromatic aberration is caused by the fact that n = n(�). This can be partially corrected
with a lens which is composed of more lenses with di�erent functions ni(�). Using N lenses
makes it possible to obtain the same f for N wavelengths.

2. Spherical aberration is caused by second-order e�ects which are usually ignored; a spherical
surface does not make a perfect lens. Incomming rays far from the optical axis will more bent.

3. Coma is caused by the fact that the principal planes of a lens are only at near the principal
axis. Further away of the optical axis they are curved. This curvature can be both positive or
negative.

4. Astigmatism: from each point of an object not on the optical axis the image is an ellipse
because the thickness of the lens is not the same everywhere.

5. Field curvature can be corrected by the human eye.

6. Distorsion gives abberations near the edges of the image. This can be corrected with a com-
bination of positive and negative lenses.

6.5 Reection and transmission

If an electromagnetic wave hits a transparent medium part of the wave will reect at the same angle
as the incident angle, and a part will be refracted at an angle according to Snell's law. It makes
a di�erence whether the ~E �eld of the wave is ? or k w.r.t. the surface. When the coe�cients of
reection r and transmission t are de�ned as:

rk �
�
E0r

E0i

�
k
; r? �

�
E0r

E0i

�
?
; tk �

�
E0t

E0i

�
k
; t? �

�
E0t

E0i

�
?

where E0r is the reected amplitude and E0t the transmitted amplitude. Then the Fresnel equations
are:

rk =
tan(�i � �t)
tan(�i + �t)

; r? =
sin(�t � �i)
sin(�t + �i)

tk =
2 sin(�t) cos(�i)

sin(�t + �i) cos(�t � �i) ; t? =
2 sin(�t) cos(�i)

sin(�t + �i)

The following holds: t? � r? = 1 and tk + rk = 1. If the coe�cient of reection R and transmission
T are de�ned as (with �i = �r):

R � Ir
Ii

and T � It cos(�t)

Ii cos(�i)

with I = hj~Sji it follows: R + T = 1. A special case is r? = 0. This happens if the angle between
the reected and transmitted rays is 90�. From Snell's law it then follows: tan(�i) = n. This angle is
called Brewster's angle. The situation with rk = 0 is not possible.
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6.6 Polarization

The polarization is de�ned as: P =
Ip

Ip + Iu
=
Imax � Imin
Imax + Imin

where the intensity of the polarized light is given by Ip and the intensity of the unpolarized light
is given by Iu. Imax and Imin are the maximum and minimum intensities when the light passes a
polarizer. If polarized light passes through a polarizer Malus law applies: I(�) = I(0) cos2(�) where
� is the angle of the polarizer.

The state of a light ray can be described by the Stokes-parameters: start with 4 �lters which each
transmits half the intensity. The �rst is independent of the polarization, the second and third are
linear polarizers with the transmission axes horizontal and at +45�, while the fourth is a circular
polarizer which is opaque for L-states. Then holds S1 = 2I1, S2 = 2I2 � 2I1, S3 = 2I3 � 2I1 and
S4 = 2I4 � 2I1.

The state of a polarized light ray can also be described by the Jones vector:

~E =

�
E0xei'x

E0yei'y

�

For the horizontal P -state holds: ~E = (1; 0), for the vertical P -state ~E = (0; 1), the R-state is given
by ~E = 1

2

p
2(1;�i) and the L-state by ~E = 1

2

p
2(1; i). The change in state of a light beam after

passage of optical equipment can be described as ~E2 =M � ~E1. For some types of optical equipment
the Jones matrixM is given by:

Horizontal linear polarizer:

�
1 0
0 0

�

Vertical linear polarizer:

�
0 0
0 1

�

Linear polarizer at +45� 1
2

�
1 1
1 1

�

Lineair polarizer at �45� 1
2

�
1 �1
�1 1

�
1
4 -� plate, fast axis vertical ei�=4

�
1 0
0 �i

�
1
4 -� plate, fast axis horizontal ei�=4

�
1 0
0 i

�

Homogene circular polarizor right 1
2

�
1 i
�i 1

�

Homogene circular polarizer left 1
2

�
1 �i
i 1

�

6.7 Prisms and dispersion

A light ray passing through a prism is refracted twice and aquires a deviation from its original direction
� = �i + �i0 + � w.r.t. the incident direction, where � is the apex angle, �i is the angle between the
incident angle and a line perpendicular to the surface and �i0 is the angle between the ray leaving the
prism and a line perpendicular to the surface. When �i varies there is an angle for which � becomes
minimal. For the refractive index of the prism now holds:

n =
sin(12(�min + �))

sin(12�)
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The dispersion of a prism is de�ned by:

D =
d�

d�
=
d�

dn

dn

d�

where the �rst factor depends on the shape and the second on the composition of the prism. For the
�rst factor follows:

d�

dn
=

2 sin(12�)

cos(12 (�min + �))

For visible light usually holds dn=d� < 0: shorter wavelengths are stronger bent than longer. The
refractive index in this area can usually be approximated by Cauchy's formula.

6.8 Di�raction

Fraunhofer di�raction occurs far away from the source(s). The Fraunhofer di�raction of light passing
through multiple slits is described by:

I(�)

I0
=

�
sin(u)

u

�2
�
�
sin(Nv)

sin(v)

�2
where u = �b sin(�)=�, v = �d sin(�)=�. N is the number of slits, b the width of a slit and d the
distance between the slits. The maxima in intensity are given by d sin(�) = k�.

The di�raction through a spherical aperture with radius a is described by:

I(�)

I0
=

�
J1(ka sin(�))

ka sin(�)

�2
The di�raction pattern of a rectangular aperture at distance R with length a in the x-direction and
b in the y-direction is described by:

I(x; y)

I0
=

�
sin(�0)

�0

�2�sin(�0)
�0

�2
where �0 = kax=2R and �0 = kby=2R.

When X rays are di�racted at a crystal holds for the position of the maxima in intensity Bragg's

relation: 2d sin(�) = n� where d is the distance between the crystal layers.

Close at the source the Fraunhofermodel is invalid because it ignores the angle-dependence of the
reected waves. This is described by the obliquity or inclination factor, which describes the direc-
tionality of the secondary emissions: E(�) = 1

2E0(1 + cos(�)) where � is the angle w.r.t. the optical
axis.

Di�raction limits the resolution of a system. This is the minimum angle ��min between two incident
rays coming from points far away for which their refraction patterns can be detected separately. For
a circular slit holds: ��min = 1:22�=D where D is the diameter of the slit.

For a grating holds: ��min = 2�=(Na cos(�m)) where a is the distance between two peaks and N the
number of peaks. The minimumdi�erence between two wavelengths that gives a separated di�raction
pattern in a multiple slit geometry is given by ��=� = nN where N is the number of lines and n the
order of the pattern.

6.9 Special optical e�ects

� Birefringe and dichroism. ~D is not parallel with ~E if the polarizability ~P of a material is
not equal in all directions. There are at least 3 directions, the principal axes, in which they are
parallel. This results in 3 refractive indices ni which can be used to construct Fresnel's ellipsoid.
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In case n2 = n3 6= n1, which happens e.g. at trigonal, hexagonal and tetragonal crystals there
is one optical axis in the direction of n1. Incident light rays can now be split up in two parts:
the ordinary wave is linear polarized ? the plane through the transmission direction and the
optical axis. The extraordinary wave is linear polarized in the plane through the transmission
direction and the optical axis. Dichroism is caused by a di�erent absorption of the ordinary
and extraordinary wave in some materials. Double images occur when the incident ray makes
an angle with the optical axis: the extraordinary wave will refract, the ordinary will not.

� Retarders: waveplates and compensators. Incident light will have a phase shift of �' =
2�d(jn0�nej)=�0 if an uniaxial crystal is cut in such a way that the optical axis is parallel with
the front and back plane. Here, �0 is the wavelength in vacuum and n0 and ne the refractive
indices for the ordinary and extraordinary wave. For a quarter-wave plate holds: �' = �=2.

� The Kerr-e�ect: isotropic, transparent materials can become birefringent when placed in an
electric �eld. In that case, the optical axis is parallel to ~E. The di�erence in refractive index in
the two directions is given by: �n = �0KE2, where K is the Kerr constant of the material. If
the electrodes have an e�ective length ` and are separated by a distance d, the retardation is
given by: �' = 2�K`V 2=d2, where V is the applied voltage.

� The Pockels or linear electro-optical e�ect can occur in 20 (from a total of 32) crystal symmetry
classes, namely those without a centre of symmetry. These crystals are also piezoelectric: their
polarization changes when a pressure is applied and vice versa: ~P = pd+"0�~E. The retardation
in a Pockels cell is �' = 2�n30r63V=�0 where r63 is the 6-3 element of the electro-optic tensor.

� The Faraday e�ect: the polarization of light passing through material with length d and to
which a magnetic �eld is applied in the propagation direction is rotated by an angle � = VBd
where V is the Verdet constant.

� �Cerenkov radiation arises when a charged particle with vq > vf arrives. The radiation is
emitted within a cone with an apex angle � with sin(�) = c=cmedium = c=nvq.

6.10 The Fabry-Perot interferometer

For a Fabry-Perot interferometer holds
in general: T + R + A = 1 where T
is the transmission factor, R the reec-
tion factor and A the absorption fac-
tor. If F is given by F = 4R=(1� R)2
it follows for the intensity distribution:

It
Ii

=

�
1� A

1�R
�2 1

1 + F sin2(�)

The term [1 + F sin2(�)]�1 := A(�) is
called the Airy function.

�-
Source Lens d Focussing lens

Screen

PPPPq

The width of the peaks at half height is given by  = 4=
p
F . The �nesse F is de�ned as F = 1

2�
p
F .

The maximum resolution is then given by �fmin = c=2ndF .
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Statistical physics

7.1 Degrees of freedom

A molecule consisting of n atoms has s = 3n degrees of freedom. There are 3 translational degrees of
freedom, a linear molecule has s = 3n� 5 vibrational degrees of freedom and a non-linear molecule
s = 3n� 6. A linear molecule has 2 rotational degrees of freedom and a non-linear molecule 3.

Because vibrational degrees of freedom account for both kinetic and potential energy they count
double. So, for linear molecules this results in a total of s = 6n � 5. For non-linear molecules this
gives s = 6n� 6. The average energy of a molecule in thermodynamic equilibrium is hEtoti = 1

2skT .
Each degree of freedom of a molecule has in principle the same energy: the principle of equipartition.

The rotational and vibrational energy of a molecule are:

Wrot =
�h2

2I
l(l + 1) = Bl(l + 1) ; Wvib = (v + 1

2 )�h!0

The vibrational levels are excited if kT � �h!, the rotational levels of a hetronuclear molecule are
excited if kT � 2B. For homonuclear molecules additional selection rules apply so the rotational
levels are well coupled if kT � 6B.

7.2 The energy distribution function

The general form of the equilibrium velocity distribution function is
P (vx; vy; vz)dvxdvydvz = P (vx)dvx �P (vy)dvy � P (vz)dvz with

P (vi)dvi =
1

�
p
�
exp

�
� v

2
i

�2

�
dvi

where � =
p
2kT=m is the most probable velocity of a particle. The average velocity is given by

hvi = 2�=
p
�, and



v2
�
= 3

2�
2. The distribution as a function of the absolute value of the velocity is

given by:
dN

dv
=

4N

�3
p
�
v2 exp

�
�mv

2

2kT

�
The general form of the energy distribution function then becomes:

P (E)dE =
c(s)

kT

�
E

kT

� 1
2
s�1

exp

�
� E

kT

�
dE

where c(s) is a normalization constant, given by:

1. Even s: s = 2l: c(s) =
1

(l � 1)!

2. Odd s: s = 2l + 1: c(s) =
2lp

�(2l � 1)!!

30
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7.3 Pressure on a wall

The number of molecules that collides with a wall with surface A within a time � is given by:

ZZZ
d3N =

1Z
0

�Z
0

2�Z
0

nAv� cos(�)P (v; �; ')dvd�d'

From this follows for the particle ux on the wall: � = 1
4n hvi. For the pressure on the wall then

follows:

d3p =
2mv cos(�)d3N

A�
; so p =

2

3
n hEi

7.4 The equation of state

If intermolecular forces and the volume of the molecules can be neglected then for gases from p =
2
3n hEi and hEi = 3

2kT can be derived:

pV = nsRT =
1

3
Nm



v2
�

Here, ns is the number of moles particles and N is the total number of particles within volume V . If
the own volume and the intermolecular forces cannot be neglected the Van der Waals equation can
be derived: �

p+
an2s
V 2

�
(V � bns) = nsRT

There is an isotherme with a horizontal point of inection. In the Van der Waals equation this
corresponds with the critical temperature, pressure and volume of the gas. This is the upper limit of
the area of coexistence between liquid and vapor. From dp=dV = 0 and d2p=dV 2 = 0 follows:

Tcr =
8a

27bR
; pcr =

a

27b2
; Vcr = 3bns

For the critical point holds: pcrVm;cr=RTcr = 3
8 , which di�ers from the value of 1 which follows from

the general gas law.

Scaled on the critical quantities, with p� := p=pcr, T � = T=Tcr and V �
m = Vm=Vm;cr with Vm := V=ns

holds: �
p� +

3

(V �
m)

2

��
V �
m � 1

3

�
= 8

3T
�

Gases behave the same for equal values of the reduced quantities: the law of the corresponding states.
A virial expansion is used for even more accurate views:

p(T; Vm) = RT

�
1

Vm
+
B(T )

V 2
m

+
C(T )

V 3
m

+ � � �
�

The Boyle temperature TB is the temperature for which the 2nd virial coe�cient is 0. In a Van der
Waals gas, this happens at TB = a=Rb. The inversion temperature Ti = 2TB.

The equation of state for solids and liquids is given by:

V

V0
= 1 + p�T � �T�p = 1 +

1

V

�
@V

@T

�
p

�T +
1

V

�
@V

@p

�
T

�p
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7.5 Collisions between molecules

The collision probability of a particle in a gas that is translated over a distance dx is given by n�dx,

where � is the cross section. The mean free path is given by ` =
v1
nu�

with u =
p
v21 + v22 the relative

velocity between the particles. If m1 � m2 holds:
u

v1
=

r
1 +

m1

m2
, so ` =

1

n�
. If m1 = m2 holds:

` =
1

n�
p
2
. This means that the average time between two collisions is given by � =

1

n�v
. If the

molecules are approximated by hard spheres the cross section is: � = 1
4�(D

2
1 + D2

2). The average
distance between two molecules is 0:55n�1=3. Collisions between molecules and small particles in a
solution result in the Brownian motion. For the average motion of a particle with radius R can be
derived:



x2i
�
= 1

3



r2
�
= kT t=3��R.

A gas is called a Knudsen gas if `� the dimensions of the gas, something that can easily occur at low
pressures. The equilibrium condition for a vessel which has a hole with surface A in it for which holds
that `�p

A=� is: n1
p
T1 = n2

p
T2. Together with the general gas law follows: p1=

p
T1 = p2=

p
T2.

If two plates move along each other at a distance d with velocity wx the viscosity � is given by:

Fx = �
Awx
d

. The velocity pro�le between the plates is in that case given by w(z) = zwx=d. It can

be derived that � = 1
3%` hvi where v is the thermal velocity.

The heat conductance in a non-moving gas is described by:
dQ

dt
= �A

�
T2 � T1

d

�
, which results

in a temperature pro�le T (z) = T1 + z(T2 � T1)=d. It can be derived that � = 1
3CmV n` hvi =NA.

Also holds: � = CV �. A better expression for � can be obtained with the Eucken correction:
� = (1 + 9R=4cmV )CV � � with an error <5%.

7.6 Interaction between molecules

For dipole interaction between molecules can be derived that U � �1=r6. If the distance between
two molecules approaches the molecular diameter D a repulsing force between the electron clouds
appears. This force can be described by Urep � exp(�r) or Vrep = +Cs=rs with 12 � s � 20. This
results in the Lennard-Jones potential for intermolecular forces:

ULJ = 4�

"�
D

r

�12
�
�
D

r

�6#

with a minimum � at r = rm. The following holds: D � 0:89rm. For the Van der Waals coe�cients
a and b and the critical quantities holds: a = 5:275N2

AD
3�, b = 1:3NAD3, kTkr = 1:2� and Vm;kr =

3:9NAD3.

A more simple model for intermolecular forces assumes a potential U (r) =1 for r < D, U (r) = ULJ
for D � r � 3D and U (r) = 0 for r � 3D. This gives for the potential energy of one molecule:

Epot =

Z 3D

D
U (r)F (r)dr.

with F (r) the spatial distribution function in spherical coordinates, which for a homogeneous distri-
bution is given by: F (r)dr = 4n�r2dr.

Some useful mathematical relations are:

1Z
0

xne�xdx = n! ;

1Z
0

x2ne�x
2

dx =
(2n)!

p
�

n!22n+1
;

1Z
0

x2n+1e�x
2

dx = 1
2n!



Chapter 8

Thermodynamics

8.1 Mathematical introduction

If there exists a relation f(x; y; z) = 0 between 3 variables, one can write: x = x(y; z), y = y(x; z)
and z = z(x; y). The total di�erential dz of z is than given by:

dz =

�
@z

@x

�
y

dx+

�
@z

@y

�
x

dy

By writing this also for dx and dy it can be obtained that�
@x

@y

�
z

�
�
@y

@z

�
x

�
�
@z

@x

�
y

= �1

Because dz is a total di�erential holds
H
dz = 0.

A homogeneous function of degree m obeys: "mF (x; y; z) = F ("x; "y; "z). For such a function Euler's
theorem applies:

mF (x; y; z) = x
@F

@x
+ y

@F

@y
+ z

@F

@z

8.2 De�nitions

� The isochoric pressure coe�cient: �V =
1

p

�
@p

@T

�
V

� The isothermal compressibility: �T = � 1

V

�
@V

@p

�
T

� The isobaric volume coe�cient: p =
1

V

�
@V

@T

�
p

� The adiabatic compressibility: �S = � 1

V

�
@V

@p

�
S

For an ideal gas follows: p = 1=T , �T = 1=p and �V = �1=V .

8.3 Thermal heat capacity

� The speci�c heat at constant X is: CX = T

�
@S

@T

�
X

� The speci�c heat at constant pressure: Cp =

�
@H

@T

�
p

� The speci�c heat at constant volume: CV =

�
@U

@T

�
V

33
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For an ideal gas holds: Cmp � CmV = R. Further, if the temperature is high enough to thermalize
all internal rotational and vibrational degrees of freedom, holds: CV = 1

2sR. Hence Cp =
1
2(s + 2)R.

For their ratio now follows  = (2 + s)=s. For a lower T one needs only to consider the thermalized
degrees of freedom. For a Van der Waals gas holds: CmV = 1

2sR + ap=RT 2.

In general holds:

Cp �CV = T

�
@p

@T

�
V

�
�
@V

@T

�
p

= �T
�
@V

@T

�2
p

�
@p

@V

�
T

� 0

Because (@p=@V )T is always < 0, the following is always valid: Cp � CV . If the coe�cient of
expansion is 0, Cp = CV , and also at T = 0K.

8.4 The laws of thermodynamics

The zeroth law states that heat ows from higher to lower temperatures. The �rst law is the conserva-
tion of energy. For a closed system holds: Q = �U+W , where Q is the total added heat, W the work
done and �U the di�erence in the internal energy. In di�erential form this becomes: dQ = dU+dW ,
where d means that the it is not a di�erential of a quantity of state. For a quasi-static process holds:
dW = pdV . So for a reversible process holds: dQ = dU + pdV .

For an open (owing) system the �rst law is: Q = �H +Wi +�Ekin +�Epot. One can extract an
amount of work Wt from the system or add Wt = �Wi to the system.

The second law states: for a closed system there exists an additive quantity S, called the entropy, the
di�erential of which has the following property:

dS � dQ

T

If the only processes occurring are reversible holds: dS = dQrev=T . So, the entropy di�erence after
a reversible process is:

S2 � S1 =
2Z

1

dQrev

T

So, for a reversible cycle holds:

I
dQrev

T
= 0.

For an irreversible cycle holds:

I
dQirr

T
< 0.

The third law of thermodynamics is (Nernst):

lim
T!0

�
@S

@X

�
T

= 0

From this it can be concluded that the thermal heat capacity ! 0 if T ! 0, so absolute zero
temperature cannot be reached by cooling through a �nite number of steps.

8.5 State functions and Maxwell relations

The quantities of state and their di�erentials are:

Internal energy: U dU = TdS � pdV
Enthalpy: H = U + pV dH = TdS + V dp
Free energy: F = U � TS dF = �SdT � pdV
Gibbs free enthalpy: G = H � TS dG = �SdT + V dp
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From this one can derive Maxwell's relations:�
@T

@V

�
S

= �
�
@p

@S

�
V

;

�
@T

@p

�
S

=

�
@V

@S

�
p

;

�
@p

@T

�
V

=

�
@S

@V

�
T

;

�
@V

@T

�
p

= �
�
@S

@p

�
T

From the total di�erential and the de�nitions of CV and Cp it can be derived that:

TdS = CV dT + T

�
@p

@T

�
V

dV and TdS = CpdT � T
�
@V

@T

�
p

dp

For an ideal gas also holds:

Sm = CV ln

�
T

T0

�
+R ln

�
V

V0

�
+ Sm0 and Sm = Cp ln

�
T

T0

�
�R ln

�
p

p0

�
+ S0m0

Helmholtz' equations are:�
@U

@V

�
T

= T

�
@p

@T

�
V

� p ;

�
@H

@p

�
T

= V � T
�
@V

@T

�
p

for an enlarged surface holds: dWrev = �dA, with  the surface tension. From this follows:

 =

�
@U

@A

�
S

=

�
@F

@A

�
T

8.6 Processes

The e�ciency � of a process is given by: � =
Work done

Heat added

The Cold factor � of a cooling down process is given by: � =
Cold delivered

Work added

Reversible adiabatic processes

For adiabatic processes holds: W = U1 � U2. For reversible adiabatic processes holds Poisson's
equation: with  = Cp=CV one gets that pV  =constant. Also holds: TV �1 =constant and
T p1� =constant. Adiabatics exhibit a greater steepness p-V diagram than isothermics because
 > 1.

Isobaric processes

Here holds: H2 �H1 =
R 2
1 CpdT . For a reversible isobaric process holds: H2 �H1 = Qrev.

The throttle process

This is also called the Joule-Kelvin e�ect and is an adiabatic expansion of a gas through a porous
material or a small opening. Here H is a conserved quantity, and dS > 0. In general this is
accompanied with a change in temperature. The quantity which is important here is the throttle

coe�cient:

�H =

�
@T

@p

�
H

=
1

Cp

"
T

�
@V

@T

�
p

� V
#

The inversion temperature is the temperature where an adiabatically expanding gas keeps the same
temperature. If T > Ti the gas heats up, if T < Ti the gas cools down. Ti = 2TB, with for TB:
[@(pV )=@p]T = 0. The throttle process is e.g. applied in refridgerators.

The Carnotprocess

The system undergoes a reversible cycle with 2 isothemics and 2 adiabatics:

1. Isothermic expansion at T1. The system absorbs a heat Q1 from the reservoir.
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2. Adiabatic expansion with a temperature drop to T2.

3. Isothermic compression at T2, removing Q2 from the system.

4. Adiabatic compression to T1.

The e�ciency for Carnot's process is:

� = 1� jQ2j
jQ1j = 1� T2

T1
:= �C

The Carnot e�ciency �C is the maximal e�ciency at which a heat machine can operate. If the process
is applied in reverse order and the system performs a work �W the cold factor is given by:

� =
jQ2j
W

=
jQ2j

jQ1j � jQ2j =
T2

T1 � T2
The Stirling process

Stirling's cycle exists of 2 isothermics and 2 isochorics. The e�ciency in the ideal case is the same as
for Carnot's cycle.

8.7 Maximal work

Consider a system that changes from state 1 into state 2, with the temperature and pressure of the
surroundings given by T0 and p0. The maximum work which can be obtained from this change is,
when all processes are reversible:

1. Closed system: Wmax = (U1 � U2)� T0(S1 � S2) + p0(V1 � V2).
2. Open system: Wmax = (H1 �H2)� T0(S1 � S2)��Ekin ��Epot.

The minimal work needed to attain a certain state is: Wmin = �Wmax.

8.8 Phase transitions

Phase transitions are isothermic and isobaric, so dG = 0. When the phases are indicated by �, � and
 holds: G�

m = G�
m and

�Sm = S�m � S�m =
r��
T0

where r�� is the transition heat of phase � to phase � and T0 is the transition temperature. The
following holds: r�� = r�� and r�� = r� � r� . Further

Sm =

�
@Gm

@T

�
p

so G has a twist in the transition point. In a two phase system Clapeyron's equation is valid:

dp

dT
=
S�m � S�m
V �
m � V �

m

=
r��

(V �
m � V �

m)T

For an ideal gas one �nds for the vapor line at some distance from the critical point:

p = p0e
�r��=RT

There exist also phase transitions with r�� = 0. For those there will occur only a discontinuity in the
second derivates of Gm. These second-order transitions appear at organization phenomena.

A phase-change of the 3rd order, so with e.g. [@3Gm=@T 3]p non continuous arises e.g. when ferro-
magnetic iron changes to the paramagnetic state.
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8.9 Thermodynamic potential

When the number of particles within a system changes this number becomes a third quantity of state.
Because addition of matter usually takes place at constant p and T , G is the relevant quantity. If a
system exists of more components this becomes:

dG = �SdT + V dp+
X
i

�idni

where � =

�
@G

@ni

�
p;T;nj

is called the thermodynamic potential. This is a partial quantity. For V

holds:

V =
cX
i=1

ni

�
@V

@ni

�
nj;p;T

:=
cX

i=1

niVi

where Vi is the partial volume of component i. The following holds:

Vm =
X
i

xiVi

0 =
X
i

xidVi

where xi = ni=n is the molar fraction of component i. The molar volume of a mixture of two
components can be a concave line in a V -x2 diagram: the mixing contracts the volume.

The thermodynamic potentials are not independent in a multiple-phase system. It can be derived
that

P
i
nid�i = �SdT + V dp, this gives at constant p and T :

P
i
xid�i = 0 (Gibbs-Duhmen).

Each component has as much �'s as there are phases. The number of free parameters in a system
with c components and p di�erent phases is given by f = c + 2� p.

8.10 Ideal mixtures

For a mixture of n components holds (the index 0 is the value for the pure component):

Umixture =
X
i

niU
0
i ; Hmixture =

X
i

niH
0
i ; Smixture = n

X
i

xiS
0
i +�Smix

where for ideal gases holds: �Smix = �nRP
i
xi ln(xi).

For the thermodynamic potentials holds: �i = �0i + RT ln(xi) < �0i . A mixture of two liquids is
rarely ideal: this is usually only the case for chemically related components or isotopes. In spite of
this holds Raoult's law for the vapour pressure holds for many binary mixtures: pi = xip0i = yip.
Here is xi the fraction of the ith component in liquid phase and yi the fraction of the ith component
in gas phase.

A solution of one component in another gives rise to an increase in the boiling point �Tk and a
decrease of the freezing point �Ts. For x2 � 1 holds:

�Tk =
RT 2k
r��

x2 ; �Ts = �RT
2
s

r�
x2

with r�� the evaporation heat and r� < 0 the melting heat. For the osmotic pressure � of a solution
holds: �V 0

m1 = x2RT .

8.11 Conditions for equilibrium

When a system evolves towards equilibrium the only changes that are possible are those for which
holds: (dS)U;V � 0 or (dU )S;V � 0 or (dH)S;p � 0 or (dF )T;V � 0 or (dG)T;p � 0. In equilibrium for

each component holds: ��i = ��i = �i .
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8.12 Statistical basis for thermodynamics

The number of possibilities P to distribute N particles on n possible energy levels, each with a g-fold
degeneracy is called the thermodynamic probability and is given by:

P = N !
Y
i

gnii
ni!

The most probable distribution, that with the maximum value for P , is the equilibrium state. When
Stirling's equation, ln(n!) � n ln(n)�n is used, one �nds for a discrete system the Maxwell-Boltzmann
distribution. The occupation numbers in equilibrium are then given by:

ni =
N

Z
gi exp

�
�Wi

kT

�
The state sum Z is a normalization constant, given by: Z =

P
i
gi exp(�Wi=kT ). For an ideal gas

holds:

Z =
V (2�mkT )3=2

h3

The entropy can then be de�ned as: S = k ln(P ) . For a system in thermodynamic equilibrium this

becomes:

S =
U

T
+ kN ln

�
Z

N

�
� U

T
+ k ln

�
ZN

N !

�

For an ideal gas, with U = 3
2kT then holds: S = 5

2kN + kN ln

�
V (2�mkT )3=2

Nh3

�

8.13 Application to other systems

Thermodynamics can be applied to other systems than gases and liquids. To do this the term
dW = pdV has to be replaced with the correct work term, like dWrev = �Fdl for the stretching of a
wire, dWrev = �dA for the expansion of a soap bubble or dWrev = �BdM for a magnetic system.

A rotating, non-charged black hole has a temparature of T = �hc=8�km. It has an entropy S =
Akc3=4�h� with A the area of its event horizon. For a Schwarzschild black hole A is given by A =
16�m2. Hawkings area theorem states that dA=dt � 0.

Hence, the lifetime of a black hole � m3.
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Transport phenomena

9.1 Mathematical introduction

An important relation is: if X is a quantity of a volume element which travels from position ~r to
~r + d~r in a time dt, the total di�erential dX is then given by:

dX =
@X

@x
dx+

@X

@y
dy +

@X

@z
dz +

@X

@t
dt ) dX

dt
=
@X

@x
vx +

@X

@y
vy +

@X

@z
vz +

@X

@t

This results in general to:
dX

dt
=
@X

@t
+ (~v � r)X .

From this follows that also holds:
d

dt

ZZZ
Xd3V =

@

@t

ZZZ
Xd3V +

ZZ
 X(~v � ~n)d2A

where the volume V is surrounded by surface A. Some properties of the r operator are:

div(�~v) = �div~v + grad� � ~v rot(�~v) = �rot~v + (grad�)� ~v rot grad� = ~0
div(~u � ~v) = ~v � (rot~u)� ~u � (rot~v) rot rot~v = grad div~v �r2~v div rot~v = 0
div grad� = r2� r2~v � (r2v1;r2v2;r2v3)

Here, ~v is an arbitrary vector �eld and � an arbitrary scalar �eld. Some important integral theorems
are:

Gauss:

ZZ
 (~v � ~n)d2A =

ZZZ
(div~v )d3V

Stokes for a scalar �eld:

I
(� � ~et)ds =

ZZ
(~n � grad�)d2A

Stokes for a vector �eld:

I
(~v � ~et)ds =

ZZ
(rot~v � ~n)d2A

This results in:

ZZ
 (rot~v � ~n)d2A = 0

Ostrogradsky:

ZZ
 (~n� ~v )d2A =

ZZZ
(rot~v )d3A

ZZ
 (�~n)d2A =

ZZZ
(grad�)d3V

Here, the orientable surface
RR

d2A is limited by the Jordan curve
H
ds.

9.2 Conservation laws

On a volume work two types of forces:

1. The force ~f0 on each volume element. For gravity holds: ~f0 = %~g.

2. Surface forces working only on the margins: ~t. For these holds: ~t = ~n T, where T is the stress
tensor.

39
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T can be split in a part pI representing the normal tensions and a part T0 representing the shear
stresses: T = T

0 + pI, where I is the unit tensor. When viscous aspects can be ignored holds:
divT= �gradp.
When the ow velocity is ~v at position ~r holds on position ~r + d~r:

~v(d~r) = ~v(~r)|{z}
translation

+ d~r � (grad~v)| {z }
rotation; deformation; dilatation

The quantity L:=grad~v can be split in a symmetric part D and an antisymmetric part W. L = D+W

with

Dij :=
1

2

�
@vi
@xj

+
@vj
@xi

�
; Wij :=

1

2

�
@vi
@xj
� @vj
@xi

�
When the rotation or vorticity ~! = rot~v is introduced holds: Wij =

1
2"ijk!k. ~! represents the local

rotation velocity: ~dr �W = 1
2! � ~dr.

For a Newtonian liquid holds: T0 = 2�D. Here, � is the dynamical viscosity. This is related to the
shear stress � by:

�ij = �
@vi
@xj

For compressible media can be stated: T0 = (�0div~v)I + 2�D. From equating the thermodynamical
and mechanical pressure it follows: 3�0 + 2� = 0. If the viscosity is constant holds: div(2D) =
r2~v + grad div~v.

The conservation laws for mass, momentum and energy for continuous media can be written in both
integral and di�erential form. They are:

Integral notation:

1. Conservation of mass:
@

@t

ZZZ
%d3V +

ZZ
 %(~v � ~n)d2A = 0

2. Conservation of momentum:
@

@t

ZZZ
%~vd3V +

ZZ
 %~v(~v � ~n)d2A =

ZZZ
f0d

3V +

ZZ
 ~n � Td2A

3. Conservation of energy:
@

@t

ZZZ
(12v

2 + e)%d3V +

ZZ
 (12v

2 + e)%(~v � ~n)d2A =

�
ZZ
 (~q � ~n)d2A+

ZZZ
(~v � ~f0)d3V +

ZZ
 (~v � ~n T)d2A

Di�erential notation:

1. Conservation of mass:
@%

@t
+ div � (%~v) = 0

2. Conservation of momentum: %
@~v

@t
+ (%~v � r)~v = ~f0 + divT = ~f0 � gradp+ divT0

3. Conservation of energy: %T
ds

dt
= %

de

dt
� p

%

d%

dt
= �div~q + T

0 : D

Here, e is the internal energy per unit of mass E=m and s is the entropy per unit of mass S=m.
~q = ��~rT is the heat ow. Further holds:

p = �@E
@V

= � @e

@1=%
; T =

@E

@S
=
@e

@s

so

CV =

�
@e

@T

�
V

and Cp =

�
@h

@T

�
p
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with h = H=m the enthalpy per unit of mass.

From this one can derive the Navier-Stokes equations for an incompressible, viscous and heat-
conducting medium:

div~v = 0

%
@~v

@t
+ %(~v � r)~v = %~g � gradp+ �r2~v

%C
@T

@t
+ %C(~v � r)T = �r2T + 2�D : D

with C the thermal heat capacity. The force ~F on an object within a ow, when viscous e�ects are
limited to the boundary layer, can be obtained using the momentum law. If a surface A surrounds
the object outside the boundary layer holds:

~F = �
ZZ
 [p~n+ %~v(~v � ~n)]d2A

9.3 Bernoulli's equations

Starting with the momentum equation one can �nd for a non-viscous medium for stationary ows,
with

(~v � grad)~v = 1
2grad(v

2) + (rot~v)� ~v
and the potential equation ~g = �grad(gh) that:

1
2v

2 + gh+

Z
dp

%
= constant along a streamline

For compressible ows holds: 1
2v

2 + gh + p=% =constant along a line of ow. If also holds rot~v = 0
and the entropy is equal on each streamline holds 1

2v
2 + gh +

R
dp=% =constant everywhere. For

incompressible ows this becomes: 1
2v

2 + gh + p=% =constant everywhere. For ideal gases with
constant Cp and CV holds, with  = Cp=CV :

1
2v

2 +


 � 1

p

%
= 1

2v
2 +

c2

 � 1
= constant

With a velocity potential de�ned by ~v = grad� holds for instationary ows:

@�

@t
+ 1

2v
2 + gh+

Z
dp

%
= constant everywhere

9.4 Characterising of ows by dimensionless numbers

The advantage of dimensionless numbers is that they make model experiments possible: one has
to make the dimensionless numbers which are important for the speci�c experiment equal for both
model and the real situation. One can also deduce functional equalities without solving the di�erential
equations. Some dimensionless numbers are given by:

Mach: Ma =
v

c
Reynolds: Re =

vL

�

Strouhal: Sr =
!L

v
Froude: Fr =

v2

gL

Fourier: Fo =
a

!L2
P�eclet: Pe =

vL

a

Prandtl: Pr =
�

a
Nusselt: Nu =

L�

�

Eckert: Ec =
v2

c�T
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Here, � = �=% is the kinematic viscosity, c is the speed of sound and L is a characteristic length of
the system. � follows from the equation for heat transport �@yT = ��T and a = �=%c is the thermal
di�usion coe�cient.

These numbers can be interpreted as follows:

� Re: (stationary inertial forces)/(viscous forces)

� Sr: (non-stationary inertial forces)/(stationary inertial forces)

� Fr: (stationary inertial forces)/(gravity)

� Fo: (heat conductance)/(non-stationary change in enthalpy)

� Pe: (convective heat transport)/(heat conductance)

� Ec: (viscous dissipation)/(convective heat transport)

� Pr and Nu are related to speci�c materials.

Now, the dimensionless Navier-Stokes equation becomes, with x0 = x=L, ~v 0 = ~v=V , grad0 = Lgrad,
r02 = L2r2 and t0 = t!:

Sr
@~v 0

@t0
+ (~v 0 � r0)~v 0 = �grad0p+ ~g

Fr
+
r02~v 0

Re

9.5 Tube ows

For tube ows holds: they are laminar if Re< 2300 with dimension of length the diameter of the
tube, and turbulent if Re is larger. For an incompressible laminar ow through a straight, circular
tube holds for the velocity pro�le:

v(r) = � 1

4�

dp

dx
(R2 � r2)

For the volume ow holds: �V =

RZ
0

v(r)2�rdr = � �

8�

dp

dx
R4

The entrance length Le is given by:

1. 500 < ReD < 2300: Le=2R = 0:056ReD

2. Re > 2300: Le=2R � 50

For gas transport at low pressures (Knudsen-gas) holds: �V =
4R3�

p
�

3

dp

dx

For ows at a small Re holds: rp = �r2~v and div~v = 0. For the total force on a sphere with radius
R in a ow then holds: F = 6��Rv. For large Re holds for the force on a surface A: F = 1

2CWA%v
2.

9.6 Potential theory

The circulation � is de�ned as: � =

I
(~v � ~et)ds =

ZZ
(rot~v) � ~nd2A =

ZZ
(~! � ~n)d2A

For non viscous media, if p = p(%) and all forces are conservative, Kelvin's theorem can be derived:

d�

dt
= 0
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For rotationless ows a velocity potential ~v = grad� can be introduced. In the incompressible case
follows from conservation of mass r2� = 0. For a 2-dimensional ow a ow function  (x; y) can be
de�ned: with �AB the amount of liquid owing through a curve s between the points A and B:

�AB =

BZ
A

(~v � ~n)ds =
BZ
A

(vxdy � vydx)

and the de�nitions vx = @ =@y, vy = �@ =@x holds: �AB =  (B) �  (A). In general holds:

@2 

@x2
+
@2 

@y2
= �!z

In polar coordinates holds:

vr =
1

r

@ 

@�
=
@�

@r
; v� = �@ 

@r
=

1

r

@�

@�

For source ows with power Q in (x; y) = (0; 0) holds: � =
Q

2�
ln(r) so that vr = Q=2�r, v� = 0.

For a dipole of strength Q in x = a and strength �Q in x = �a follows from superposition: � =
�Qax=2�r2 where Qa is the dipole strength. For a vortex holds: � = ��=2�.

If an object is surrounded by an uniform main ow with ~v = v~ex and such a large Re that viscous
e�ects are limited to the boundary layer holds: Fx = 0 and Fy = �%�v. The statement that Fx = 0 is
d'Alembert's paradox and originates from the neglection of viscous e�ects. The lift Fy is also created
by � because � 6= 0 due to viscous e�ects. Henxe rotating bodies also create a force perpendicular to
their direction of motion: the Magnus e�ect.

9.7 Boundary layers

9.7.1 Flow boundary layers

If for the thickness of the boundary layer holds: � � L holds: � � L=
p
Re. With v1 the velocity

of the main ow it follows for the velocity vy ? the surface: vyL � �v1. Blasius' equation for the
boundary layer is, with vy=v1 = f(y=�): 2f 000+ ff 00 = 0 with boundary conditions f(0) = f 0(0) = 0,

f 0(1) = 1. From this follows: CW = 0:664 Re�1=2x .

The momentum theorem of Von Karman for the boundary layer is:
d

dx
(#v2) + ��v

dv

dx
=
�0
%

where the displacement thickness ��v and the momentum thickness #v2 are given by:

#v2 =

1Z
0

(v � vx)vxdy ; ��v =

1Z
0

(v � vx)dy and �0 = �� @vx
@y

����
y=0

The boundary layer is released from the surface if

�
@vx
@y

�
y=0

= 0. This is equivalent with
dp

dx
=

12�v1
�2

.

9.7.2 Temperature boundary layers

If the thickness of the temperature boundary layer �T � L holds: 1. If Pr � 1: �=�T �
p
Pr.

2. If Pr� 1: �=�T � 3
p
Pr.
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9.8 Heat conductance

For non-stationairy heat conductance in one dimension without ow holds:

@T

@t
=

�

%c

@2T

@x2
+ �

where � is a source term. If � = 0 the solutions for harmonic oscillations at x = 0 are:

T � T1
Tmax � T1 = exp

�
� x
D

�
cos
�
!t � x

D

�
with D =

p
2�=!%c. At x = �D the temperature variation is in anti-phase with the surface. The

one-dimensional solution at � = 0 is

T (x; t) =
1

2
p
�at

exp

�
� x2

4at

�
This is mathematical equivalent to the di�usion problem:

@n

@t
= Dr2n+ P � A

where P is the production of and A the discharge of particles. The ow density J = �Drn.

9.9 Turbulence

The time scale of turbulent velocity variations �t is of the order of: �t = �
p
Re=Ma2 with � the

molecular time scale. For the velocity of the particles holds: v(t) = hvi + v0(t) with hv0(t)i = 0. The
Navier-Stokes equation now becomes:

@ h~v i
@t

+ (h~v i � r) h~v i = �rhpi
%

+ �r2 h~v i + divSR
%

where SRij = �% hvivji is the turbulent stress tensor. Boussinesq's assumption is: �ij = �%


v0iv

0
j

�
.

It is stated that, analogous to Newtonian media: SR = 2%�t hDi. Near a boundary holds: �t = 0, far
away of a boundary holds: �t � �Re.

9.10 Self organization

For a (semi) two-dimensional ow holds:
d!

dt
=
@!

@t
+ J(!;  ) = �r2!

With J(!;  ) the Jacobian. So if � = 0, ! is conserved. Further, the kinetic energy=mA and the

enstrofy V are conserved: with ~v = r� (~k )

E � (r )2 �
1Z
0

E(k; t)dk = constant ; V � (r2 )2 �
1Z
0

k2E(k; t)dk = constant

From this follows that in a two-dimensional ow the energy ux goes towards large values of k: larger
structures become larger at the expanse of smaller ones. In three-dimensional ows the situation is
just the opposite.
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Quantum physics

10.1 Introduction to quantum physics

10.1.1 Black body radiation

Planck's law for the energy distribution for the radiation of a black body is:

w(f) =
8�hf3

c3
1

ehf=kT � 1
; w(�) =

8�hc

�5
1

ehc=�kT � 1

Stefan-Boltzmann's law for the total power density can be derived from this: P = A�T 4. Wien's law
for the maximum can also be derived from this: T�max = kW.

10.1.2 The Compton e�ect

For the wavelength of scattered light, if light is considered to exist of particles, can be derived:

�0 = � +
h

mc
(1 � cos �) = �+ �C(1� cos �)

10.1.3 Electron di�raction

Di�raction of electrons at a crystal can be explained by assuming that particles have a wave character
with wavelength � = h=p. This wavelength is called the Broglie-wavelength.

10.2 Wave functions

The wave character of particles is described by a wavefunction  . This wavefunction can be described
in normal or momentum space. Both de�nitions are each others Fourier transform:

�(k; t) =
1p
h

Z
	(x; t)e�ikxdx and 	(x; t) =

1p
h

Z
�(k; t)eikxdk

These waves de�ne a particle with group velocity vg = p=m and energy E = �h!.

The wavefunction can be interpreted as a measure for the probability P to �nd a particle somewhere
(Born): dP = j j2d3V . The expectation value hfi of a quantity f of a system is given by:

hf(t)i =
ZZZ

	�f	d3V ; hfp(t)i =
ZZZ

��f�d3Vp

This is also written as hf(t)i = h�jf j�i. The normalizing condition for wavefunctions follows from
this: h�j�i = h	j	i = 1.

10.3 Operators in quantum physics

In quantum mechanics, classical quantities are translated into operators. These operators are hermi-
tian because their eigenvalues must be real:Z

 �1A 2d
3V =

Z
 2(A 1)

�d3V
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When un is the eigenfunction of the eigenvalue equation A	 = a	 for eigenvalue an, 	 can be
expanded into a basis of eigenfunctions: 	 =

P
n
cnun. If this basis is taken orthonormal, then follows

for the coe�cients: cn = hunj	i. If the system is in a state described by 	, the chance to �nd
eigenvalue an when measuring A is given by jcnj2 in the discrete part of the spectrum and jcnj2da
in the continuous part of the spectrum between a and a + da. The matrix element Aij is given by:
Aij = huijAjuji. Because (AB)ij = huijABjuji = huijAP

n
juni hunjBjuji holds: P

n
junihunj = 1.

The time-dependence of an operator is given by (Heisenberg):

dA

dt
=
@A

@t
+
[A;H]

i�h

with [A;B] � AB � BA the commutator of A and B. For hermitian operators the commutator is
always complex. If [A;B] = 0, the operators A and B have a common set of eigenfunctions. By
applying this to px and x follows (Ehrenfest): md2 hxit =dt2 = �hdU (x)=dxi.
The �rst order approximation hF (x)it � F (hxi), with F = �dU=dx represents the classical equation.
Before the addition of quantummechanical operators which are a product of other operators, they
should be made symmetrical: a classical product AB becomes 1

2(AB + BA).

10.4 The uncertainty principle

If the uncertainty �A in A is de�ned as: (�A)2 =


 jAop � hAi j2 

�
=


A2
�� hAi2 it follows:

�A ��B � 1
2 j h j[A;B]j i j

From this follows: �E ��t � 1
2�h, and because [x; px] = i�h holds: �px ��x � 1

2�h, and �Lx ��Ly �
1
2�hLz.

10.5 The Schr�odinger equation

The momentumoperator is given by: pop = �i�hr. The position operator is: xop = i�hrp. The energy
operator is given by: Eop = i�h@=@t. The Hamiltonian of a particle with mass m, potential energy
U and total energy E is given by: H = p2=2m + U . From H = E then follows the Schr�odinger

equation:

� �h2

2m
r2 + U = E = i�h

@ 

@t

The linear combination of the solutions of this equation give the general solution. In one dimension
it is:

 (x; t) =

�X
+

Z
dE

�
c(E)uE (x) exp

�
� iEt

�h

�

The current density J is given by: J =
�h

2im
( �r �  r �)

The following conservation law holds:
@P (x; t)

@t
= �rJ(x; t)

10.6 Parity

The parity operator in one dimension is given by P (x) =  (�x). If the wavefunction is split in even
and odd functions, it can be expanded into eigenfunctions of P:

 (x) = 1
2 ( (x) +  (�x))| {z }

even:  +

+ 1
2 ( (x) �  (�x))| {z }

odd:  �
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[P;H] = 0. The functions  + = 1
2(1+P) (x; t) and  � = 1

2 (1�P) (x; t) both satisfy the Schr�odinger
equation. Hence, parity is a conserved quantity.

10.7 The tunnel e�ect

The wavefunction of a particle in an 1 high potential step from x = 0 to x = a is given by  (x) =
a�1=2 sin(kx). The energylevels are given by En = n2h2=8a2m.

If the wavefunction with energy W meets a potential well of W0 > W the wavefunction will, unlike
the classical case, be non-zero within the potential well. If 1, 2 and 3 are the areas in front, within
and behind the potential well, holds:

 1 = Aeikx +Be�ikx ;  2 = Ceik
0x +De�ik

0x ;  3 = A0eikx

with k02 = 2m(W �W0)=�h
2 and k2 = 2mW . Using the boundary conditions requiring continuity:

 =continuous and @ =@x =continuous at x = 0 and x = a gives B, C and D and A0 expressed
in A. The amplitude T of the transmitted wave is de�ned by T = jA0j2=jAj2. If W > W0 and
2a = n�0 = 2�n=k0 holds: T = 1.

10.8 The harmonic oscillator

For a harmonic oscillator holds: U = 1
2bx

2 and !20 = b=m. The Hamiltonian H is then given by:

H =
p2

2m
+ 1

2m!
2x2 = 1

2�h! + !AyA

with

A =
q

1
2m!x+

ipp
2m!

and Ay =
q

1
2m!x�

ipp
2m!

A 6= Ay is non hermitian. [A;Ay] = �h and [A;H] = �h!A. A is a so called raising ladder operator,
Ay a lowering ladder operator. HAuE = (E � �h!)AuE . There is an eigenfunction u0 for which
holds: Au0 = 0. The energy in this ground state is 1

2�h!: the zero point energy. For the normalized
eigenfunctions follows:

un =
1p
n!

�
Ayp
�h

�n
u0 with u0 = 4

r
m!

��h
exp

�
�m!x

2

2�h

�
with En = (12 + n)�h!.

10.9 Angular momentum

For the angular momentum operators L holds: [Lz; L2] = [Lz;H] = [L2;H] = 0. However, cyclically
holds: [Lx; Ly] = i�hLz . Not all components of L can be known at the same time with arbitrary
accuracy. For Lz holds:

Lz = �i�h @

@'
= �i�h

�
x
@

@y
� y @

@x

�
The ladder operators L� are de�ned by: L� = Lx � iLy. Now holds: L2 = L+L� + L2z � �hLz.
Further,

L� = �he�i'
�
� @

@�
+ i cot(�)

@

@'

�
From [L+; Lz] = ��hL+ follows: Lz(L+Ylm) = (m + 1)�h(L+Ylm).

From [L�; Lz] = �hL� follows: Lz(L�Ylm) = (m � 1)�h(L�Ylm).

From [L2; L�] = 0 follows: L2(L�Ylm) = l(l + 1)�h2(L�Ylm).

Because Lx and Ly are hermitian (this impliesLy� = L�) and jL�Ylmj2 > 0 follows: l(l+1)�m2�m �
0 ) �l � m � l. Further follows that l has to be integral or half-integral. Half-odd integral values
give no unique solution  and are therefore dismissed.
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10.10 Spin

For the spin operators are de�ned by their commutation relations: [Sx; Sy] = i�hSz. Because the
spin operators do not act in the physical space (x; y; z) the uniqueness of the wavefunction is not a
criterium here: also half odd-integer values are allowed for the spin. Because [L; S] = 0 spin and
angular momentum operators do not have a common set of eigenfunctions. The spin operators are

given by
~~S = 1

2�h
~~�, with

~~�x =

�
0 1
1 0

�
; ~~�y =

�
0 �i
i 0

�
; ~~�z =

�
1 0
0 �1

�
The eigenstates of Sz are called spinors: � = �+�+ + ����, where �+ = (1; 0) represents the state
with spin up (Sz = 1

2�h) and �� = (0; 1) represents the state with spin down (Sz = �1
2�h). Then the

probability to �nd spin up after a measurement is given by j�+j2 and the chance to �nd spin down
is given by j��j2. Of course holds j�+j2 + j��j2 = 1.

The electron will have an intrinsic magnetic dipole moment ~M due to its spin, given by ~M =
�egS ~S=2m, with gS = 2(1 + �=2� + � � �) the gyromagnetic ratio. In the presence of an external
magnetic �eld this gives a potential energy U = � ~M � ~B. The Schr�odinger equation then becomes
(because @�=@xi � 0):

i�h
@�(t)

@t
=
egS�h

4m
~� � ~B�(t)

with ~� = (~~�x; ~~�y; ~~�z). If ~B = B~ez there are two eigenvalues for this problem: �� for E =
�egS�hB=4m = ��h!. So the general solution is given by � = (ae�i!t; bei!t). From this can be
derived: hSxi = 1

2�h cos(2!t) and hSyi = 1
2�h sin(2!t). Thus the spin precesses about the z-axis with

frequency 2!. This causes the normal Zeeman splitting of spectral lines.

The potential operator for two particles with spin �1
2�h is given by:

V (r) = V1(r) +
1

�h2
(~S1 � ~S2)V2(r) = V1(r) +

1
2V2(r)[S(S + 1)� 3

2 ]

This makes it possible for two states to exist: S = 1 (triplet) or S = 0 (Singlet).

10.11 The Dirac formalism

If the operators for p and E are substituted in the relativistic equation E2 = m2
0c

4 + p2c2, the
Klein-Gordon results: �

r2 � 1

c2
@2

@t2
� m2

0c
2

�h2

�
 (~x; t) = 0

The operator 2�m2
0c
2=�h2 can be separated:

r2 � 1

c2
@2

@t2
� m2

0c
2

�h2
=

�
�

@

@x�
� m2

0c
2

�h2

��
�

@

@x�
+
m2
0c
2

�h2

�
where the Dirac matrices  are given by: �� + �� = 2���. From this it can be derived that the
 are hermitian 4� 4 matrices given by:

k =

�
0 �i�k
i�k 0

�
; 4 =

�
I 0
0 �I

�
With this, the Dirac equation becomes:�

�
@

@x�
+
m2
0c
2

�h2

�
 (~x; t) = 0

where  (x) = ( 1(x);  2(x);  3(x);  4(x)) is a spinor.
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10.12 Atomic physics

10.12.1 Solutions

The solutions of the Schr�odinger equation in spherical coordinates if the potential energy is a function
of r alone can be written as:  (r; �; ') = Rnl(r)Yl;ml (�; ')�ms , with

Ylm =
Clmp
2�
Pm
l (cos �)eim'

For an atom or ion with one electron holds: Rlm(�) = Clme
��=2�lL2l+1n�l�1(�)

with � = 2rZ=na0 with a0 = "0h2=�mee2. The L
j
i are the associated Laguere functions and the Pm

l
are the associated Legendre polynomials:

P jmj
l (x) = (1� x2)m=2 d

jmj

dxjmj
�
(x2 � 1)l

�
; Lmn (x) =

(�1)mn!
(n�m)! e

�xx�m
dn�m

dxn�m
(e�xxn)

The parity of these solutions is (�1)l. The functions are 2
n�1P
l=0

(2l + 1) = 2n2-folded degenerated.

10.12.2 Eigenvalue equations

The eigenvalue equations for an atom or ion with with one electron are:

Equation Eigenvalue Range

Hop = E En = �e4Z2=8"20h
2n2 n � 1

LzopYlm = LzYlm Lz = ml�h �l � ml � l
L2opYlm = L2Ylm L2 = l(l + 1)�h2 l < n

Szop� = Sz� Sz = ms�h ms = �1
2

S2op� = S2� S2 = s(s + 1)�h2 s = 1
2

10.12.3 Spin-orbit interaction

The total momentum is given by ~J = ~L + ~M . The total magnetic dipole moment of an electron
is then ~M = ~ML + ~MS = �(e=2me)(~L + gS ~S) where gS = 2:0023 is the gyromagnetic ratio of the
electron. Further holds: J2 = L2 + S2 + 2~L � ~S = L2 + S2 + 2LzSz +L+S� + L�S+. J has quantum
numbers j with possible values j = l� 1

2 , with 2j+1 possible z-components (mJ 2 f�j; ::; 0; ::; jg). If
the interaction energy between S and L is small it can be stated that: E = En+ESL = En+ a~S � ~L.
It can then be derived that:

a =
jEnjZ2�2

�h2nl(l + 1)(l + 1
2 )

After a relativistic correction this becomes:

E = En +
jEnjZ2�2

n

�
3

4n
� 1

j + 1
2

�

The �ne structure in atomic spectra arises from this. With gS = 2 follows for the average magnetic
moment: ~Mav = �(e=2me)g�h ~J , where g is the Land�e-factor:

g = 1 +
~S � ~J
J2

= 1 +
j(j + 1) + s(s + 1)� l(l + 1)

2j(j + 1)

For atoms with more than one electron the following limiting situations occur:
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1. L � S coupling: for small atoms the electrostatic interaction is dominant and the state can be
characterized by L; S; J;mJ . J 2 fjL�Sj; :::; L+S�1; L+Sg and mJ 2 f�J; :::; J�1; Jg. The
spectroscopic notation for this interaction is: 2S+1LJ . 2S + 1 is the multiplicity of a multiplet.

2. j�j coupling: for larger atoms the electrostatic interaction is smaller than the Li �si interaction
of an electron. The state is characterized by ji:::jn; J;mJ where only the ji of the not completely
�lled subshells are to be taken into account.

The energy di�erence for larger atoms when placed in a magnetic �eld is: �E = g�BmJB where
g is the Land�e factor. For a transition between two singlet states the line splits in 3 parts, for
�mJ = �1; 0 + 1. This results in the normal Zeeman e�ect. At higher S the line splits up in more
parts: the anomalous Zeeman e�ect.

Interaction with the spin of the nucleus gives the hyper�ne structure.

10.12.4 Selection rules

For the dipole transition matrix elements follows: p0 � jhl2m2j~E � ~r jl1m1ij. Conservation of angular
momentum demands that for the transition of an electron holds that �l = �1.
For an atom where L � S coupling is dominant further holds: �S = 0 (but not strict), �L = 0;�1,
�J = 0;�1 except for J = 0 ! J = 0 transitions, �mJ = 0;�1, but �mJ = 0 is forbidden if
�J = 0.

For an atom where j � j coupling is dominant further holds: for the jumping electron holds, except
�l = �1, also: �j = 0;�1, and for all other electrons: �j = 0. For the total atom holds: �J = 0;�1
but no J = 0! J = 0 transitions and �mJ = 0;�1, but �mJ = 0 is forbidden if �J = 0.

10.13 Interaction with electromagnetic �elds

The Hamiltonian of an electron in an electromagnetic �eld is given by:

H =
1

2�
(~p+ e ~A)2 � eV = � �h

2

2�
r2 +

e

2�
~B � ~L +

e2

2�
A2 � eV

where � is the reduced mass of the system. The term � A2 can usually be neglected, except for very
strong �elds or macroscopic motions. For ~B = B~ez it is given by e2B2(x2 + y2)=8�.

When a gauge transformation ~A0 = ~A � rf , V 0 = V + @f=@t is applied to the potentials the
wavefunction is also transformed according to  0 =  eiqef=�h with qe the charge of the particle.
Because f = f(x; t), this is called a local gauge transformation, in contrast with a global gauge
transformation which can always be applied.

10.14 Perturbation theory

10.14.1 Time-independent perturbation theory

To solve the equation (H0 + �H1) n = En n one has to �nd the eigenfunctions of H = H0 + �H1.
Suppose that �n is a complete set of eigenfunctions of the non-perturbed Hamiltonian H0: H0�n =
E0
n�n. Because �n is a complete set holds:

 n = N (�)

8<
:�n +X

k 6=n

cnk(�)�k

9=
;

When cnk and En are being expanded into �: cnk = �c
(1)
nk + �2c

(2)
nk + � � �

En = E0
n + �E(1)

n + �2E(2)
n + � � �
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and this is put into the Schr�odinger equation the result is: E(1)
n = h�njH1j�ni and

c(1)nm =
h�mjH1j�ni
E0
n � E0

m
if m 6= n. The second-order correction of the energy is then given by:

E(2)
n =

X
k 6=n

j h�kjH1j�ni j2
E0
n �E0

k

. So to �rst order holds:  n = �n +
X
k 6=n

h�kj�H1j�ni
E0
n � E0

k

�k.

In case the levels are degenerated the above does not hold. In that case an orthonormal set eigen-
functions �ni is chosen for each level n, so that h�mij�nji = �mn�ij . Now  is expanded as:

 n = N (�)

8<
:X

i

�i�ni + �
X
k 6=n

c(1)nk

X
i

�i�ki + � � �
9=
;

Eni = E0
ni+�E

(1)
ni is approximated by E0

ni := E0
n. Substitution in the Schr�odinger equation and taking

dot product with �ni gives:
P
i
�i h�njjH1j�nii = E

(1)
n �j. Normalization requires that

P
i
j�ij2 = 1.

10.14.2 Time-dependent perturbation theory

From the Schr�odinger equation i�h
@ (t)

@t
= (H0 + �V (t)) (t)

and the expansion  (t) =
X
n

cn(t) exp

��iE0
nt

�h

�
�n with cn(t) = �nk + �c

(1)
n (t) + � � �

follows: c(1)n (t) =
�

i�h

tZ
0

h�njV (t0)j�ki exp
�
i(E0

n � E0
k)t

0

�h

�
dt0

10.15 N-particle systems

10.15.1 General

Identical particles are indistinguishable. For the total wavefunction of a system of identical indistin-
guishable particles holds:

1. Particles with a half-odd integer spin (Fermions):  total must be antisymmetric w.r.t. inter-
change of the coordinates (spatial and spin) of each pair of particles. The Pauli principle results
from this: two Fermions cannot exist in an identical state because then  total = 0.

2. Particles with an integer spin (Bosons):  total must be symmetric w.r.t. interchange of the
coordinates (spatial and spin) of each pair of particles.

For a system of two electrons there are 2 possibilities for the spatial wavefunction. When a and b are
the quantum numbers of electron 1 and 2 holds:

 S(1; 2) =  a(1) b(2) +  a(2) b(1) ;  A(1; 2) =  a(1) b(2)�  a(2) b(1)
Because the particles do not approach each other closely the repulsion energy at  A in this state is
smaller. The following spin wavefunctions are possible:

�A = 1
2

p
2[�+(1)��(2)� �+(2)��(1)] ms = 0

�S =

8<
:

�+(1)�+(2) ms = +1
1
2

p
2[�+(1)��(2) + �+(2)��(1)] ms = 0

��(1)��(2) ms = �1
Because the total wavefunction must be antisymmetric it follows:  total =  S�A or  total =  A�S.
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For N particles the symmetric spatial function is given by:

 S(1; :::; N ) =
X

 (all permutations of 1::N )

The antisymmetric wavefunction is given by the determinant  A(1; :::; N ) =
1p
N !
juEi(j)j

10.15.2 Molecules

The wavefunctions of atom a and b are �a and �b. If the 2 atoms approach each other there are
two possibilities: the total wavefunction approaches the bonding function with lower total energy
 B = 1

2

p
2(�a+�b) or approaches the anti-bonding function with higher energy  AB = 1

2

p
2(�a��b).

If a molecular-orbital is symmetric w.r.t. the connecting axis, like a combination of two s-orbitals it
is called a �-orbital, otherwise a �-orbital, like the combination of two p-orbitals along two axes.

The energy of a system is: E =
h jHj i
h j i .

The energy calculated with this method is always higher than the real energy if  is only an ap-
proximation for the solutions of H = E . Also, if there are more functions to be chosen, the
function which gives the lowest energy is the best approximation. Applying this to the function
 =

P
ci�i one �nds: (Hij�ESij)ci = 0. This equation has only solutions if the secular determinant

jHij � ESij j = 0. Here, Hij = h�ijHj�ji and Sij = h�ij�ji. �i := Hii is the Coulomb integral and
�ij := Hij the exchange integral. Sii = 1 and Sij is the overlap integral.

The �rst approximation in the molecular-orbital theory is to place both electrons of a chemical bond in
the bonding orbital:  (1; 2) =  B(1) B(2). This results in a large electron density between the nuclei
and therefore a repulsion. A better approximation is:  (1; 2) = C1 B(1) B(2) + C2 AB(1) AB(2),
with C1 = 1 and C2 � 0:6.

In some atoms, such as C, it is energetical more suitable to form orbitals which are a linear combination
of the s, p and d states. There are three ways of hybridization in C:

1. SP-hybridization:  sp =
1
2

p
2( 2s� 2pz ). There are 2 hybrid orbitals which are placed on one

line under 180�. Further the 2px and 2py orbitals remain.

2. SP2 hybridization:  sp2 =  2s+c1 2pz+c2 2py , where (c1; c2) 2 f(1;�1; 0); (1; 1;�1); (1; 1; 1)g.
The 3 SP2 orbitals lay in one plane, with symmetry axes which are at an angle of 120�.

3. SP3 hybridization:  sp3 =
1
2 ( 2s �  2pz �  2py �  2px). The 4 SP3 orbitals form a tetraheder

with the symmetry axes at an angle of 109�280.

10.16 Quantum statistics

If a system exists in a state in which one has not the disposal of the maximal amount of information
about the system, it can be described by a density matrix �. If the probability that the system is in
state  i is given by ai, one can write for the expectation value a of A: hai =P

i
rih ijAj ii.

If  is expanded into an orthonormal basis f�kg as:  (i) =
P
k
c
(i)
k �k, holds:

hAi =
X
k

(A�)kk = Tr(A�)

where �lk = c�kcl. � is hermitian, with Tr(�) = 1. Further holds � =
P
rij iih ij. The probability to

�nd eigenvalue an when measuring A is given by �nn if one uses a basis of eigenvectors of A for f�kg.
For the time-dependence holds (in the Schr�odinger image operators are not explicitly time-dependent):

i�h
d�

dt
= [H; �]
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For a macroscopic system in equilibrium holds [H; �] = 0. If all quantumstates with the same energy
are equally probable: Pi = P (Ei), one can obtain the distribution:

Pn(E) = �nn =
e�En=kT

Z
with the state sum Z =

X
n

e�En=kT

The thermodynamic quantities are related to these de�nitions as follows: F = �kT ln(Z), U = hHi =P
n
pnEn = � @

@kT
ln(Z), S = �kP

n
Pn ln(Pn). For a mixed state of M orthonormal quantum states

with probability 1=M follows: S = k ln(M ).

The distribution function for the internal states for a system in thermal equilibrium is the most
probable function. This function can be found by taking the maximum of the function which gives
the number of states with Stirling's equation: ln(n!) � n ln(n)�n, and the conditionsP

k
nk = N andP

k
nkWk = W . For identical, indistinguishable particles which obey the Pauli exclusion principle the

possible number of states is given by:

P =
Y
k

gk!

nk!(gk � nk)!

This results in the Fermi-Dirac statistics. For indistinguishable particles which do not obey the
exclusion principle the possible number of states is given by:

P = N !
Y
k

gnkk
nk!

This results in the Bose-Einstein statistics. So the distribution functions which explain how particles
are distributed over the di�erent one-particle states k which are each gk-fold degenerate depend on
the spin of the particles. They are given by:

1. Fermi-Dirac statistics: integer spin. nk 2 f0; 1g, nk = N

Zg

gk
exp((Ek � �)=kT ) + 1

with ln(Zg) =
P
gk ln[1 + exp((Ei � �)=kT )].

2. Bose-Einstein statistics: half odd-integer spin. nk 2 IN , nk =
N

Zg

gk
exp((Ek � �)=kT )� 1

with ln(Zg) = �P gk ln[1� exp((Ei � �)=kT )].
Here, Zg is the large-canonical state sum and � the chemical potential. It is found by demandingP
nk = N , and for it holds: lim

T!0
� = EF, the Fermi-energy. N is the total number of particles. The

Maxwell-Boltzmann distribution can be derived from this in the limit Ek � �� kT :

nk =
N

Z
exp

�
�Ek
kT

�
with Z =

X
k

gk exp

�
�Ek
kT

�

With the Fermi-energy, the Fermi-Dirac and Bose-Einstein statistics can be written as:

1. Fermi-Dirac statistics: nk =
gk

exp((Ek �EF)=kT ) + 1
.

2. Bose-Einstein statistics: nk =
gk

exp((Ek �EF)=kT ) � 1
.
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Plasma physics

11.1 Introduction

The degree of ionization � of a plasma is de�ned by: � =
ne

ne + n0

where ne is the electron density and n0 the density of the neutrals. If a plasma contains also negative
charged ions � is not well de�ned.

The probability that a test particle collides with another is given by dP = n�dx where � is the cross
section. The collision frequency �c = 1=�c = n�v. The mean free path is given by �v = 1=n�. The
rate coe�cient K is de�ned by K = h�vi. The number of collisions per unit of time and volume
between particles of kind 1 and 2 is given by n1n2 h�vi = Kn1n2.

The potential of an electron is given by:

V (r) =
�e

4�"0r
exp

�
� r

�D

�
with �D =

s
"0kTeTi

e2(neTi + niTe)
�
r
"0kTe
nee2

because charge is shielded in a plasma. Here, �D is the Debye length. For distances < �D the
plasma cannot be assumed to be quasi-neutral. Deviations of charge neutrality by thermic motion
are compensated by oscillations with frequency

!pe =

s
nee2

me"0

The distance of closest approximation when two equal charged particles collide for a deviation of �=2

is 2b0 = e2=(4�"0
1
2mv

2). A \neat" plasma is de�ned as a plasma for which holds: b0 < n
�1=3
e �

�D � Lp. Here Lp := jne=rnej is the gradient length of the plasma.

11.2 Transport

Relaxation times are de�ned as � = 1=�c. Starting with �m = 4�b20 ln(�C) and with 1
2mv

2 = kT it
can be found that:

�m =
4�"20m

2v3

ne4 ln(�C)
=

8
p
2�"20

p
m(kT )3=2

ne4 ln(�C)

For momentum transfer between electrons and ions holds for a Maxwellian velocity distribution:

�ee =
6�
p
3"20
p
me(kTe)3=2

nee4 ln(�C)
� �ei ; �ii =

6�
p
3"20
p
mi(kTi)3=2

nie4 ln(�C)

The energy relaxation times for identical particles are equal to the momentum relaxation times.
Because for e-i collisions the energy transfer is only � 2me=mi this is a slow process. Approximately
holds: �ee : �ei : �ie : �Eie = 1 : 1 :

p
mi=me : mi=me.

The relaxation for e-o interaction is much more complicated. For T > 10 eV holds approximately:
�eo = 10�17v�2=5e , for lower energies this can be a factor 10 lower.
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The resistivity � = E=J of a plasma is given by:

� =
nee2

me�ei
=

e2
p
me ln(�C)

6�
p
3"20(kTe)

3=2

The di�usion coe�cient D is de�ned by means of the ux � by ~� = n~vdi� = �Drn. The equation of
continuity is @tn+r(nvdi� ) = 0) @tn = Dr2n. One �nds that D = 1

3�vv. A rough estimate gives
�D = Lp=D = L2p�c=�

2
v. For magnetized plasma's �v must be replaced with the cyclotron radius. In

electrical �elds also holds ~J = ne�~E = e(ne�e+ni�i)~E with � = e=m�c the mobility of the particles.
The Einstein ratio is:

D

�
=
kT

e

Because a plasma is electrically neutral electrons and ions are strongly coupled and they don't di�use
independent. The coe�cient of ambipolar di�usion Damb is de�ned by ~� = ~�i = ~�e = �Dambrne;i.
From this follows that

Damb =
kTe=e� kTi=e
1=�e � 1=�i

� kTe�i
e

In an external magnetic �eld B0 particles will move in spiral orbits with cyclotron radius � = mv=eB0

and with cyclotron frequency 
 = B0e=m. The helical orbit is perturbed by collisions. A plasma is
called magnetized if �v > �e;i. So the electrons are magnetized if

�e
�ee

=

p
mee3ne ln(�C)

6�
p
3"20(kTe)

3=2B0
< 1

Magnetization of only the electrons is su�cient to con�ne the plasma reasonable because they are
coupled to the ions by charge neutrality. In case of magnetic con�nement holds: rp = ~J � ~B.
Combined with the two stationary Maxwell equations for the B-�eld these form the ideal magneto-
hydrodynamic equations. For a uniform B-�eld holds: p = nkT = B2=2�0.

If both magnetic and electric �elds are present electrons and ions will move in the same direction.
If ~E = Er~er + Ez~ez and ~B = Bz~ez the ~E � ~B drift results in a velocity ~u = (~E � ~B)=B2 and the
velocity in the r; ' plane is _r(r; '; t) = ~u+ _~�(t).

11.3 Elastic collisions

11.3.1 General

The scattering angle of a particle in interaction with
another particle, as shown in the �gure at the right is:

� = � � 2b

1Z
ra

dr

r2

s
1� b2

r2
� W (r)

E0

Particles with an impact parameter between b and b +
db, moving through a ring with d� = 2�bdb leave the
scattering area at a solid angle d
 = 2� sin(�)d�. The
di�erential cross section is then de�ned as:

I(
) =

���� d�d

���� = b

sin(�)

@b

@�

6?

@@IR

�

M

b

b

ra
'

For a potential energy W (r) = kr�n follows: I(
; v) � v�4=n.
For low energies, O(1 eV), � has a Ramsauer minimum. It arises from the interference of matter
waves behind the object. I(
) for angles 0 < � < �=4 is larger than the classical value.
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11.3.2 The Coulomb interaction

For the Coulomb interaction holds: 2b0 = q1q2=2�"0mv20, so W (r) = 2b0=r. This gives b = b0 cot(12�)
and

I(
 =
b

sin(�)

@b

@�
=

b20
4 sin2(12�)

Because the inuence of a particle vanishes at r = �D holds: � = �(�2D � b20). Because dp = d(mv) =
mv0(1� cos �) a cross section related to momentum transfer �m is given by:

�m =

Z
(1� cos�)I(
)d
 = 4�b20 ln

�
1

sin(12�min)

�
= 4�b20 ln

�
�D
b0

�
:= 4�b20 ln(�C) �

ln(v4)

v4

where ln(�C) is the Coulomb-logarithm. For this quantity holds: �C = �D=b0 = 9n(�D).

11.3.3 The induced dipole interaction

The induced dipole interaction, with ~p = �~E, gives a potential V and an energy W in a dipole �eld
given by:

V (r) =
~p � ~er
4�"0r2

; W (r) = � jejp
8�"0r2

= � �e2

2(4�"0)2r4

with ba = 4

s
2e2�

(4�"0)2
1
2mv

2
0

holds: � = � � 2b

1Z
ra

dr

r2

r
1� b2

r2
+

b4a
4r4

If b � ba the charge would hit the atom. Repulsing nuclear forces prevent this to happen. If the
scattering angle is a lot times 2� it is called capture. The cross section for capture �orb = �b2a is
called the Langevin limit, and is a lowest estimate for the total cross section.

11.3.4 The centre of mass system

If collisions of two particles with masses m1 and m2 which scatter in the centre of mass system by an
angle � are compared with the scattering under an angle � in the laboratory system holds:

tan(�) =
m2 sin(�)

m1 +m2 cos(�)

The energy loss �E of the incoming particle is given by:

�E

E
=

1
2m2v22
1
2m1v21

=
2m1m2

(m1 +m2)2
(1� cos(�))

11.3.5 Scattering of light

Scattering of light by free electrons is called Thomson scattering. The scattering is free from collective
e�ects if k�D � 1. The cross section � = 6:65 � 10�29m2 and

�f

f
=

2v

c
sin(12�)

This gives for the scattered energy Escat � n�40=(�
2 � �20)

2 with n the density. If � � �0 it is
called Rayleigh scattering. Thomson sccattering is a limit of Compton scattering, which is given by
�0 � � = �C(1 � cos �) with �C = h=mc and cannot be used any more if relativistic e�ects become
important.
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11.4 Thermodynamic equilibrium and reversibility

Planck's radiation law and the Maxwellian velocity distribution hold for a plasma in equilibrium:

�(�; T )d� =
8�h�3

c3
1

exp(h�=kT )� 1
d� ; N (E; T )dE =

2�n

(�kT )3=2
p
E exp

�
� E

kT

�
dE

\Detailed balancing" means that the number of reactions in one direction equals the number of
reactions in the opposite direction because both processes have equal probability if one corrects for
the used phase space. For the reactionX

forward

Xforward  !
X
back

Xback

holds in a plasma in equilibrium microscopic reversibility:Y
forward

�̂forward =
Y
back

�̂back

If the velocity distribution is Maxwellian, this gives:

�̂x =
nx
gx

h3

(2�mxkT )3=2
e�Ekin=kT

where g is the statistical weight of the state and n=g := �. For electrons holds g = 2, for excited
states usually holds g = 2j + 1 = 2n2.

With this one �nds for the Boltzmann balance, Xp + e�  ! X1 + e� + (E1p):

nBp
n1

=
gp
g1

exp

�
Ep � E1

kTe

�

And for the Saha balance, Xp + e� + (Epi)  ! X+
1 + 2e�:

nSp
gp

=
n+1
g+1

ne
ge

h3

(2�mekTe)3=2
exp

�
Epi
kTe

�
Because the number of particles on the left-hand side and right-hand side of the equation is di�erent,
a factor g=Ve remains. This factor causes the Saha-jump.

From microscopic reversibility one can derive that for the rate coe�cients K(p; q; T ) := h�vipq holds:

K(q; p; T ) =
gp
gq
K(p; q; T ) exp

�
�Epq
kT

�

11.5 Inelastic collisions

11.5.1 Types of collisions

The kinetic energy can be split in a part of and a part in the centre of mass system. The energy in

the centre of mass system is available for reactions. This energy is given by

E =
m1m2(v1 � v2)2
2(m1 +m2)

Some types of inelastic collisions important for plasma physics are:

1. Excitation: Ap + e�  ! Aq + e�

2. Decay: Aq  ! Ap + hf
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3. Ionisation and 3-particles recombination: Ap + e�  ! A+ + 2e�

4. radiative recombination: A+ + e�  ! Ap + hf

5. Stimulated emission: Aq + hf ! Ap + 2hf

6. Associative ionisation: A�� + B  ! AB+ + e�

7. Penning ionisation: b.v. Ne� +Ar  ! Ar+ +Ne + e�

8. Charge transfer: A+ + B  ! A+ B+

9. Resonant charge transfer: A+ + A  ! A+A+

11.5.2 Cross sections

Collisions between an electron and an atom can be approximated by a collision between an electron
and one of the electrons of that atom. This results in

d�

d(�E)
=

�Z2e4

(4�"0)2E(�E)2

Then follows for the transition p! q: �pq(E) =
�Z2e4�Eq;q+1
(4�"0)2E(�E)2pq

For ionization from state p holds to a good approximation: �p = 4�a20Ry

�
1

Ep
� 1

E

�
ln

�
1:25�E

Ep

�

For resonant charge transfer holds: �ex =
A[1� B ln(E)]2

1 + CE3:3

11.6 Radiation

In equilibrium holds for radiation processes:

npApq| {z }
emission

+ npBpq�(�; T )| {z }
stimulated emission

= nqBqp�(�; T )| {z }
absorption

Here, Apq is the matrix element of the transition p! q, and is given by:

Apq =
8�2e2�3jrpqj2

3�h"0c3
with rpq = h pj~r j qi

For hydrogenic atoms holds: Ap = 1:58 � 108Z4p�4:5, with Ap = 1=�p =
P
q
Apq . The intensity I of a

line is given by Ipq = hfApqnp=4�. The Einstein coe�cients B are given by:

Bpq =
c3Apq
8�h�3

and
Bpq
Bqp

=
gq
gp

A spectral line is broadened by several mechanisms:

1. Because the states have a �nite life time. The natural life time of a state p is given by �p =
1=
P
q
Apq . From the uncertainty relation then follows: �(h�) � �p = 1

2�h, this gives

�� =
1

4��p
=

P
q
Apq

4�

The natural line width is usually � than the broadening due to the following two mechanisms:
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2. The Doppler broadening is caused by the thermal motion of the particles:

��

�
=

2

c

s
2 ln(2)kTi

mi

This broadening results in a Gaussian line pro�le:
k� = k0 exp(�[2

p
ln 2(� � �0)=��D]2), with k the coe�cient of absorption or emission.

3. The Stark broadening is caused by the electric �eld of the electrons:

��1=2 =

�
ne

C(ne; Te)

�2=3
with for the H-� line: C(ne; Te) � 3 � 1014�A�3=2cm�3.

The natural broadening and the Stark broadening result in a Lorentz pro�le of a spectral line: k� =
1
2k0��L=[(

1
2��L)

2+(���0)2]. The total line shape is a convolution of the Gauss- and Lorentz pro�le
and is called a Voigt pro�le.

The number of transitions p! q is given by npBpq� and by npnhf h�aci = np(�d�=h�)�ac where d�
is the line width. Then follows for the cross section of absorption processes: �a = Bpqh�=cd�.

The background radiation in a plasma originates from two processes:

1. Free-Bound radiation, originating from radiative recombination. The emission is given by:

"fb =
C1
�2

zininep
kTe

�
1� exp

�
� hc

�kTe

��
�fb(�; Te)

with C1 = 1:63 � 10�43 Wm4K1=2sr�1 and � the Biberman factor.

2. Free-free radiation, originating from the acceleration of particles in the EM-�eld of other parti-
cles:

"ff =
C1
�2

zininep
kTe

exp

�
� hc

�kTe

�
�ff (�; Te)

11.7 The Boltzmann transport equation

It is assumed that there exists a distribution function F for the plasma so that

F (~r;~v; t) = Fr(~r; t) � Fv(~v; t) = F1(x; t)F2(y; t)F3(z; t)F4(vx; t)F5(vy ; t)F6(vz; t)

Then the BTE is:
dF

dt
=
@F

@t
+rr � (F~v) +rv � (F~a) =

�
@F

@t

�
coll�rad

Assuming that v does not depend on r and ai does not depend on vi, holds rr � (F~v) = ~v � rF
and rv � (F~a) = ~a � rvF . This is also true in magnetic �elds because @ai=@xi = 0. The velocity is
separated in a thermal velocity ~vt and a drift velocity ~w. The total density is given by n =

R
Fd~v

and
R
~vFd~v = n~w.

The balance equations can be derived by means of the moment method:

1. Mass balance:

Z
(BTE)d~v ) @n

@t
+r � (n~w) =

�
@n

@t

�
bs

2. Momentum balance:

Z
(BTE)m~vd~v ) mn

d~w

dt
+rT0 +rp = mn h~a i + ~R

3. Energy balance:

Z
(BTE)mv2d~v ) 3

2

dp

dt
+
5

2
pr � ~w +r � ~q = Q
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Here, h~a i = e=m(~E + ~w � ~B) is the average acceleration, ~q = 1
2nm



~v 2
t ~vt

�
the heat ow,

Q =

Z
mv2t
r

�
@F

@t

�
bs
d~v the source term for energy production, ~R is a friction term and p = nkT

the pressure.

A thermodynamic derivation gives for the total pressure: p = nkT =
X
i

pi � e2(ne + zini)

24�"0�D

For the electrical conductance in a plasma follows from the momentum balance, if we � wi:

� ~J = ~E �
~J � ~B +rpe

ene

In a plasmawhere only elastic e-a collisions are important the equilibrium energy distribution function
is the Druyvesteyn distribution:

N (E)dE = Cne

�
E

E0

�3=2
exp

"
�3me

m0

�
E

E0

�2#
dE

with E0 = eE�v = eE=n�.

11.8 Collision-radiative models

These models are �rst-moment equations for excited states. One assumes the Quasi-steady-state
solution is valid, where 8p>1[(@np=@t = 0) ^ (r � (np ~wp) = 0)]. This results in:�

@np>1
@t

�
bs

= 0 ;
@n1
@t

+r � (n1 ~w1) =
�
@n1
@t

�
bs

;
@ni
@t

+r � (ni ~wi) =
�
@ni
@t

�
bs

with solutions np = r0pn
S
p + r1pn

B
p = bpnSp . Further holds for all collision-dominated levels that

�bp := bp � 1 = b0p
�x
e� with pe� =

p
Ry=Epi and 5 � x � 6. For systems in ESP, where only

collisional (de)excitation between levels p and p � 1 is taken into account holds x = 6. Even in
plasma's far from equilibrium the excited levels will eventually reach ESP, so from a certain level up
the level densities can be calculated.

To �nd the population densities of the lower levels in the stationary case one has to start with a
macroscopic equilibrium:

Number of populating processes of level p = Number of depopulating processes of level p ;

When this is expanded it becomes:

ne
X
q<p

nqKqp| {z }
coll: excit:

+ne
X
q>p

nqKqp| {z }
coll: deexcit:

+
X
q>p

nqAqp| {z }
rad: deex: to

+ n2eniK+p| {z }
coll: recomb:

+ neni�rad| {z }
rad: recomb

=

nenp
X
q<p

Kpq| {z }
coll: deexcit:

+nenp
X
q>p

Kpq| {z }
col: excit:

+ np
X
q<p

Apq| {z }
rad: deex: from

+nenpKp+| {z }
coll: ion:

11.9 Waves in plasma's

Interaction of electromagnetic waves in plasma's results in scattering and absorption of energy. For
electromagnetic waves with complex wave number k = !(n + i�)=c in one dimension one �nds:
Ex = E0e��!x=c cos[!(t� nx=c)]. The refractive index n is given by:

n = c
k

!
=

c

vf
=

r
1� !2p

!2
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For disturbances in the z-direction in a cold, homogeneous, magnetized plasma: ~B = B0~ez+
~̂
Bei(kz�!t)

and n = n0 + n̂ei(kz�!t) (external E �elds are screened) follows, with the de�nitions � = !p=! and
� = 
=! and !2p = !2pi + !2pe:

~J = ~~� ~E ;with ~~� = i"0!
X
s

�2s

0
BBB@

1

1� �2s
�i�s
1� �2s

0

i�s
1� �2s

1

1� �2s
0

0 0 1

1
CCCA

where the sum is taken over particle species s. The dielectric tensor E , with property:

~k � (~~E � ~E) = 0

is given by
~~E = ~~I � ~~�=i"0!.

With the de�nitions S = 1�
X
s

�2s
1� �2s

; D =
X
s

�2s�s
1� �2s

; P = 1�
X
s

�2s

follows:

~~E =
0
@ S �iD 0

iD S 0
0 0 P

1
A

The eigenvalues of this hermitian matrix are R = S + D, L = S � D, �3 = P , with eigenvectors
~er = 1

2

p
2(1; i; 0), ~el = 1

2

p
2(1;�i; 0) and ~e3 = (0; 0; 1). ~er is connected with a right rotating �eld for

which iEx=Ey = 1 and ~el is connected with a left rotating �eld for which iEx=Ey = �1. When k

makes an angle � with ~B one �nds:

tan2(�) =
P (n2 � R)(n2 � L)

S(n2 � RL=S)(n2 � P )
where n is the refractive index. From this the following solutions can be obtained:

A. � = 0: transmission in the z-direction.

1. P = 0: Ex = Ey = 0. This describes a longitudinal linear polarized wave.

2. n2 = L: a left, circular polarized wave.

3. n2 = R: a right, circular polarized wave.

B. � = �=2: transmission ? the B-�eld.

1. n2 = P : the ordinary mode: Ex = Ey = 0. This is a transversal linear polarized wave.

2. n2 = RL=S: the extraordinary mode: iEx=Ey = �D=S, an elliptical polarized wave.

Resonance frequencies are frequencies for which n2 !1, so vf = 0. For these holds: tan(�) = �P=S.
For R!1 this gives the electron cyclotron resonance frequency ! = 
e, for L!1 the ion cyclotron
resonance frequency ! = 
i and for S = 0 holds for the extraordinary mode:

�2
�
1� mi

me


2
i

!2

�
=

�
1� m2

i

m2
e


2
i

!2

��
1� 
2

i

!2

�
Cut-o� frequencies are frequencies for which n2 = 0, so vf !1. For these holds: P = 0 or R = 0 or
L = 0.

In the case that �2 � 1 one �nds Alfv�en waves propagating parallel to the �eld lines. With the
Alfv�en velocity

vA =

e
i

!2pe + !2pi
c2

follows: n =
p
1 + c=vA, and in case vA � c: ! = kvA.
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Solid state physics

12.1 Crystal structure

A lattice is de�ned by the 3 translation vectors ~ai, so that the atomic composition looks the same
from each point ~r and ~r0 = ~r + ~T , where ~T is a translation vector given by: ~T = u1~a1 + u2~a2 + u3~a3
with ui 2 IN . A lattice can be constructed from primitive cells. As a primitive cell one can take a
parallellepiped, with volume

Vcell = j~a1 � (~a2 � ~a3)j
Because a lattice has a periodical structure the physical properties which are connected with the
lattice have the same periodicity (neglecting boundary e�ects):

ne(~r + ~T ) = ne(~r ) :

This periodicity is suitable to use Fourier analysis: n(~r) is expanded as:

n(~r) =
X
G

nG exp(i ~G � ~r )

with

nG =
1

Vcell

ZZ
cell

Z
n(~r ) exp(�i ~G � ~r )dV :

~G is the reciprocal lattice vector. If ~G is written as ~G = v1~b1+ v2~b2+ v3~b3 with vi 2 IN , it follows for
the vectors ~bi, cyclically:

~bi = 2�
~ai+1 � ~ai+2

~ai � (~ai+1 � ~ai+2) :

The set of ~G-vectors determines the R�ontgen di�ractions: a maximumin the reected radiation occurs
if: �~k = ~G with �~k = ~k � ~k0. So: 2~k � ~G = G2. From this follows for parallel lattice planes (Bragg
reection) that for the maxima holds: 2d sin(�) = n�.

The Brillouin zone is de�ned as a Wigner-Seitz cell in the reciprocal lattice.

12.2 Crystal binding

A distinction can be made between 4 binding types:

1. Van der Waals bond

2. Ion bond

3. Covalent or homopolar bond

4. Metalic bond.

For the ion binding of NaCl the energy per molecule is calculated by:
E = cohesive energy(NaCl) { ionization energy(Na) + electron a�nity(Cl)

The interaction in a covalent bond depends on the relative spin orientations of the electrons constituing
the bond. The potential energy for two parallel spins is higher than the potential energy for two
antiparallel spins. Furthermore the potential energy for two parallel spins has sometimes no minimum.
In that case binding is not possible.

62



Chapter 12: Solid state physics 63

12.3 Crystal vibrations

12.3.1 A lattice with one type of atoms

In this model for crystal vibrations only nearest-neighbour interactions are taken into account. The
force on atom s with mass M can then be written as:

Fs =M
d2us
dt2

= C(us+1 � us) +C(us�1 � us)

Assuming that all solutions have the same time-dependence exp(�i!t) this results in:

�M!2us = C(us+1 + us�1 � 2us)

Further it is postulated that: us�1 = u exp(isKa) exp(�iKa).
This gives: us = exp(iKsa). Substituting the later two equations in the �st results in a system of
linear equations, which has only a solution if their determinant is 0. This gives:

!2 =
4C

M
sin2( 1

2
Ka)

Only vibrations with a wavelength within the �rst Brillouin Zone have a physical signi�cance. This
requires that �� < Ka � �.
The group velocity of these vibrations is given by:

vg =
d!

dK
=

r
Ca2

M
cos( 1

2
Ka) :

and is 0 on the edge of a Brillouin Zone. Here, there is a standing wave.

12.3.2 A lattice with two types of atoms

Now the solutions are:

!2 = C

�
1

M1
+

1

M2

�
�C

s�
1

M1
+

1

M2

�2
� 4 sin2(Ka)

M1M2

Connected with each value of ! are two values of K, as can
be seen in the graph. The upper line describes the optical
branch, the lower line the acoustical branch. In the optical
branch, both types of ions oscillate in opposite phases, in
the acoustical branch they oscillate in the same phase. This
results in a much larger induced dipole moment for optical
oscillations, and also a stronger emission and absorption
of radiation. Furthermore each branch has 3 polarization
directions, one longitudinal and two transversal.

-

6

0
K

!

�=a
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12.3.3 Phonons

The quantum mechanical excitation of a crystal vibration with an energy �h! is called a phonon.
Phonons can be viewed as quasi-particles: with collisions, they behave as particles with momentum
�hK. Their total momentum is 0. When they collide, their momentum need not be conserved: for a
normal process holds: K1 + K2 = K3, for an umklapp process holds: K1 +K2 = K3 + G. Because
phonons have no spin they behave like bosons.
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12.3.4 Thermal heat capacity

The total energy of the crystal vibrations can be calculated by multiplying each mode with its energy
and sum over all branches K and polarizations P :

U =
X
K

X
P

�h! hnk;pi =
X
�

Z
D�(!)

�h!

exp(�h!=kT )� 1
d!

for a given polarization �. The thermal heat capacity is then:

Crooster =
@U

@T
= k

X
�

Z
D(!)

(�h!=kT )2 exp(�h!=kT )

(exp(�h!=kT ) � 1)2
d!

The dispersion relation in one dimension is given by:

D(!)d! =
L

�

dK

d!
d! =

L

�

d!

vg

In three dimensions one applies periodic boundary conditions to a cube with N3 primitive cells and
a volume L3: exp(i(Kxx+Kyy +Kzz)) � exp(i(Kx(x+ L) +Ky(y + L) +Kz(z + L))).

Because exp(2�i) = 1 this is only possible if:

Kx;Ky;Kz = 0; �2�
L
; �4�

L
; �6�

L
; :::� 2N�

L

So there is only one allowed value of ~K per volume (2�=L)3 in K-space, or:�
L

2�

�3
=

V

8�3

allowed ~K-values per unit volume in ~K-space, for each polarization and each branch. The total
number of states with a wave vector < K is:

N =

�
L

2�

�3 4�K3

3

for each polarization. The density of states for each polarization is, according to the Einstein model:

D(!) =
dN

d!
=

�
V K2

2�2

�
dK

d!
=

V

8�3

ZZ
dA!
vg

The Debye model for thermal heat capacities is a low-temperature approximation which is valid up
to � 50K. Here, only the acoustic phonons are taken into account (3 polarizations), and one assumes
that v = !K, independent of the polarization. From this follows: D(!) = V !2=2�2v3, where v is the
speed of sound. This gives:

U = 3

Z
D(!) hni �h!d! =

!DZ
0

V !2

2�2v3
�h!

exp(�h!=kT ) � 1
d! =

3V k2T 4

2�2v3�h3

xDZ
0

x3dx

ex � 1
:

Here, xD = �h!D=kT = �D=T . �D is the Debye temperature and is de�ned by:

�D =
�hv

k

�
6�2N

V

�1=3
where N is the number of primitive cells. Because xD !1 for T ! 0 it follows from this:

U = 9NkT

�
T

�D

�3 1Z
0

x3dx

ex � 1
=

3�4NkT 4

5�D
� T 4 and CV =

12�4NkT 3

5�3D
� T 3

In the Einstein model for the thermal heat capacity one considers only phonons at one frequency, an
approximation for optical phonons.
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12.4 Magnetic �eld in the solid state

The following graph shows the magnetization versus �eldstrength for di�erent types of magnetism:

diamagnetism

ferro

paramagnetism
�m =

@M

@H

M
Msat

0 H-

6

hhhhhhhhhhhh

12.4.1 Dielectrics

The quantum mechanical origin of diamagnetism is the Larmorprecession of the spin of the electron.
Starting with a circular electron orbit in an atom with two electrons, there is a Coulomb force Fc
and a magnetic force on each electron. If the magnetic part of the force is not strong enough to
signi�cantly deform the orbit holds:

!2 =
Fc(r)

mr
� eB

m
! = !20 �

eB

m
(!0 + �)) ! =

s�
!0 � eB

2m

�2
+ � � � � !0 � eB

2m
= !0 � !L

Here, !L is the Larmor frequency. One electron is accelerated, the other decelerated. Hence there
is a net circular current which results in a magnetic moment ~�. The circular current is given by
I = �Ze!L=2�, and h�i = IA = I�



�2
�
= 2

3I�


r2
�
. If N is the number of atoms in the crystal it

follows for the susceptibility, with ~M = ~�N :

� =
�0M

B
= ��0NZe

2

6m



r2
�

12.4.2 Paramagnetism

Starting with the splitting of energy levels in a weak magnetic �eld: �Um � ~� � ~B = mJg�BB,
and with a distribution fm � exp(��Um=kT ), one �nds for the average magnetic moment h�i =P
fm�=

P
fm. After linearization and because

P
mJ = 0,

P
J = 2J+1 and

P
m2
J = 2

3J(J+1)(J+
1
2 ) it follows that:

�p =
�0M

B
=
�0N h�i

B
=
�0J(J + 1)g2�2BN

3kT
This is the Curie law, �p � 1=T .

12.4.3 Ferromagnetism

A ferromagnet behaves like a paramagnet above a critical temperature Tc. To describe ferromagnetism
a �eld BE parallel with M is postulated: ~BE = ��0 ~M . From there the treatment is analogous to the
paramagnetic case:

�0M = �p(Ba + BE) = �p(Ba + ��0M ) = �0

�
1� �C

T

�
M

From this follows for a ferromagnet: �F =
�0M

Ba
=

C

T � Tc which is Weiss-Curie's law.

If BE is estimated this way it results in values of about 1000 T. This is clearly unrealistic and suggests
another mechanism. A quantum mechanical approach from Heisenberg postulates an interaction
between two neighbouring atoms: U = �2J ~Si � ~Sj � �~� � ~BE . J is an overlap integral given by:
J = 3kTc=2zS(S + 1), with z the number of neighbours. A distinction between 2 cases can now be
made:
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1. J > 0: Si and Sj become parallel: the material is a ferromagnet.

2. J < 0: Si and Sj become antiparallel: the material is an antiferromagnet.

Heisenberg's theory predicts quantized spin waves: magnons. Starting from a model with only nearest
neighbouring atoms interacting one can write:

U = �2J ~Sp � (~Sp�1 + ~Sp+1) � ~�p � ~Bp with ~Bp =
�2J
g�B

(~Sp�1 + ~Sp+1)

The equation of motion for the magnons becomes:
d~S

dt
=

2J

�h
~Sp � (~Sp�1 + ~Sp+1)

From here the treatment is analogous to phonons: postulate traveling waves of the type ~Sp =
~u exp(i(pka� !t)). This results in a system of linear equations with solution:

�h! = 4JS(1 � cos(ka))

12.5 Free electron Fermi gas

12.5.1 Thermal heat capacity

The solution with period L of the one-dimensional Schr�odinger equation is:  n(x) = A sin(2�x=�n)
with n�n = 2L. From this follows

E =
�h2

2m

�n�
L

�2
In a linear lattice the only important quantum numbers are n and ms. The Fermi level is the
uppermost �lled level in the ground state, which has the Fermi-energy EF. If nF is the quantum
number of the Fermi level, it can be expressed as: 2nF = N so EF = �h2�2N2=8mL. In 3 dimensions
holds:

kF =

�
3�2N

V

�1=3
and EF =

�h2

2m

�
3�2N

V

�2=3

The number of states with energy � E is then: N =
V

3�2

�
2mE

�h2

�3=2
.

and the density of states becomes: D(E) =
dN

dE
=

V

2�2

�
2m

�h2

�3=2p
E =

3N

2E
.

The heat capacity of the electrons is approximately 0.01 times the classical expected value 3
2Nk. This

is caused by the Pauli exclusion principle and the Fermi-Dirac distribution: only electrons within an
energy range � kT of the Fermi level are excited thermally. There is a fraction � T=TF excited
thermally. The internal energy then becomes:

U � NkT T

TF
and C =

@U

@T
� Nk T

TF

A more accurate analysis gives: Celectrons = 1
2�

2NkT=TF � T . Together with the T 3 dependence of
the thermal heat capacity of the phonons the total thermal heat capacity of metals is described by:
C = T +AT 3.

12.5.2 Electric conductance

The equation of motion for the charge carriers is: ~F = md~v=dt = �hd~k=dt. The variation of ~k is given
by �~k = ~k(t) � ~k(0) = �e ~Et=�h. If � is the characteristic collision time of the electrons, �~k remains
stable if t = � . Then holds: h~v i = �~E, with � = e�=m the mobility of the electrons.

The current in a conductor is given by: ~J = nq~v = � ~E = ~E=� = ne�~E. Because for the collision time
holds: 1=� = 1=�L + 1=�i, where �L is the collision time with the lattice phonons and �i the collision
time with the impurities follows for the resistivity � = �L + �i, with lim

T!0
�L = 0.
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12.5.3 The Hall-e�ect

If a magnetic �eld is applied ? to the direction of the current the charge carriers will be pushed
aside by the Lorentz force. This results in a magnetic �eld ? to the ow direction of the current. If
~J = J~ex and ~B = B~ez than Ey=Ex = �B. The Hall coe�cient is de�ned by: RH = Ey=JxB, and
RH = �1=ne if Jx = ne�Ex. The Hall voltage is given by: VH = Bvb = IB=neh where b is the width
of the material and h de height.

12.5.4 Thermal heat conductivity

With ` = vF � the mean free path of the electrons follows from � = 1
3C hvi `: �electrons = �2nk2T�=3m.

From this follows for the Wiedemann-Franz ratio: �=� = 1
3 (�k=e)

2T .

12.6 Energy bands

In the tight-bond approximation it is assumed that  = eikna�(x � na). From this follows for the
energy: hEi = h jHj i = Eat � � � 2� cos(ka). So this gives a cosine superimposed on the atomic
energy, which can often be approximated by a harmonic oscillator. If it is assumed that the electron is
nearly free one can postulate:  = exp(i~k �~r ). This is a traveling wave. This wave can be decomposed
into two standing waves:

 (+) = exp(i�x=a) + exp(�i�x=a) = 2 cos(�x=a)

 (�) = exp(i�x=a)� exp(�i�x=a) = 2i sin(�x=a)

The probability density j (+)j2 is high near the atoms of the lattice and low in between. The
probability density j (�)j2 is low near the atoms of the lattice and high in between. Hence the
energy of  (+) is also lower than the energy of  )(�). Suppose that U (x) = U cos(2�x=a), than the
bandgap is given by:

Egap =

1Z
0

U (x)
�j (+)j2 � j (�)j2� dx = U

12.7 Semiconductors

The band structures and the transitions between them of direct and indirect semiconductors are
shown in the �gures below. Here it is assumed that the momentum of the absorbed photon can be
neglected. For an indirect semiconductor a transition from the valence- to the conduction band is
also possible if the energy of the absorbed photon is smaller than the band gap: then, also a phonon
is absorbed.
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This di�erence can also be observed in the absorption spectra:
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Direct semiconductor
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Indirect semiconductor
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So indirect semiconductors, like Si and Ge, cannot emit any light and are therefore not usable to
fabricate lasers. When light is absorbed holds: ~kh = �~ke, Eh(~kh) = �Ee(~ke), ~vh = ~ve and mh = �m�

e
if the conduction band and the valence band have the same structure.

Instead of the normal electron mass one has to use the e�ective mass within a lattice. It is de�ned
by:

m� =
F

a
=

dp=dt

dvg=dt
= �h

dK

dvg
= �h2

�
d2E

dk2

��1
with E = �h! and vg = d!=dk and p = �hk.

With the distribution function fe(E) � exp((��E)=kT ) for the electrons and fh(E) = 1� fe(E) for
the holes the density of states is given by:

D(E) =
1

2�2

�
2m�

�h2

�3=2p
E �Ec

with Ec the energy at the edge of the conductance band. From this follows for the concentrations of
the holes p and the electrons n:

n =

1Z
Ec

De(E)fe(E)dE = 2

�
m�kT

2��h2

�3=2
exp

�
�� Ec
kT

�

For the product np follows: np = 4

�
kT

2��h2

�3p
m�
emh exp

�
�Eg

kT

�
For an intrinsic (no impurities) semiconductor holds: ni = pi, for a n � type holds: n > p and in a
p � type holds: n < p.

An exciton is a bound electron-hole pair, rotating on each other as in positronium. The excitation
energy of an exciton is smaller than the bandgap because the energy of an exciton is lower than the
energy of a free electron and a free hole. This causes a peak in the absorption just under Eg.

12.8 Superconductivity

12.8.1 Description

A superconductor is characterized by a zero resistivity if certain quantities are smaller than some
critical values: T < Tc, I < Ic and H < Hc. The BCS-model predicts for the transition temperature
Tc:

Tc = 1:14�D exp

� �1
UD(EF)

�
while experiments �nd for Hc approximately:

Hc(T ) � Hc(Tc)

�
1� T 2

T 2c

�
:
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Within a superconductor the magnetic �eld is 0: the Meissner e�ect.

There are type I and type II superconductors. Because the Meissner e�ect implies that a supercon-
ductor is a perfect diamagnet holds in the superconducting state: ~H = �0 ~M . This holds for a type I
superconductor, for a type II superconductor this only holds to a certain value Hc1, for higher values
of H the superconductor is in a vortex state to a value Hc2, which can be 100 timesHc1. If H becomes
larger than Hc2 the superconductor becomes a normal conductor. This is shown in the �gures below.
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The transition to a superconducting state is a second order thermodynamic state transition. This
means that there is a twist in the T � S diagram and a discontinuity in the CX � T diagram.

12.8.2 The Josephson e�ect

For the Josephson e�ect one considers two superconductors, separated by an insulator. The electron
wavefunction in one superconductor is  1, in the other  2. The Schr�odinger equations in both
superconductors is set equal:

i�h
@ 1
@t

= �hT 2 ; i�h
@ 2
@t

= �hT 1

�hT is the e�ect of the coupling of the electrons, or the transfer interaction through the insulator. The
electron wavefunctions are written as  1 =

p
n1 exp(i�1) and  2 =

p
n2 exp(i�2). Because a Cooper

pair exist of two electrons holds:  � pn. From this follows, if n1 � n2:
@�1
@t

=
@�2
@t

and
@n2
@t

= �@n1
@t

The Josephson e�ect results in a current density through the insulator depending on the phase
di�erence as: J = J0 sin(�2 � �1) = J0 sin(�), where J0 � T . With an AC-voltage across the junction
the Schr�odinger equations become:

i�h
@ 1
@t

= �hT 2 � eV  1 and i�h
@ 2
@t

= �hT 1 + eV  2

This gives: J = J0 sin

�
�2 � �1 � 2eV t

�h

�
.

Hence there is an oscillation with ! = 2eV=�h.

12.8.3 Flux quantisation in a superconducting ring

For the current density in general holds: ~J = q �~v =
nq

m
[�h~r� � q ~A ]

From the Meissner e�ect, ~B = 0 and ~J = 0, follows: �h~r� = q ~A ) H
~r�dl = �2 � �1 = 2�s with

s 2 IN . Because:
H
~Adl =

RR
(rot ~A;~n)d� =

RR
( ~B;~n)d� = 	 follows: 	 = 2��hs=q. The size of a ux

quantum follows by setting s = 1: 	 = 2��h=e = 2:0678 � 10�15 Tm2.
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12.8.4 Macroscopic quantum interference

From �2 � �1 = 2e	=�h follows for two parallel junctions: �b � �a = 2e	

�h
, so

J = Ja + Jb = 2J0 sin

�
�0 cos

�
e	

�h

��
This gives maxima if e	=�h = s�.

12.8.5 The London equation

A current density in a superconductor proportional to the vector potential ~A is postulated:

~J =
� ~A
�0�2L

or rot ~J =
� ~B
�0�2L

where �L =
p
"0mc2=nq2. From this follows: r2 ~B = ~B=�2L.

The Meissner e�ect is the solution of this equation: ~B(x) = B0 exp(�x=�L). Magnetic �elds within
a superconductor drop exponentially.

12.8.6 The BCS model

The BCS model can explain superconductivity in metals. (So far there is no explanation for high-Tc
superconductance).

A new ground state where the electrons behave like independent fermions is postulated. Because of
the interaction with the lattice these pseudo-particles exhibit a mutual attraction. This causes two
electrons with opposite spin to combine to a Cooper pair. It can be proved that this ground state is
perfect diamagnetic.

The in�nite conductivity is more di�cult to explain because a ring with a persisting current is
not a real equilibrium: a state with zero current has a lower energy. Flux quantization prevents
transitions between these states. Flux quantization is related to the existence of a coherent many-
particle wavefunction. A ux quantum is the equivalent of about 104 electrons. So if the ux has
to change with one ux quantum there has to occur a transition of many electrons, which is very
improbable, or the system must go through intermediary states where the ux is not quantized so
they have a higher energy. This is also very improbable.

Some useful mathematical relations are:

1Z
0

xdx

eax + 1
=

�2

12a2
;

1Z
�1

x2dx

(ex + 1)2
=
�2

3
;

1Z
0

x3dx

ex + 1
=
�4

15

And, when
1X
n=0

(�1)n = 1
2 follows:

1Z
0

sin(px)dx =

1Z
0

cos(px)dx =
1

p
.



Chapter 13

Theory of groups

13.1 Introduction

13.1.1 De�nition of a group

G is a group for the operation � if:

1. 8A;B2G ) A �B 2 G: G is closed.

2. 8A;B;C2G ) (A �B) �C = A � (B �C): G obeys the associative law.

3. 9E2G so that 8A2GA �E = E �A = A: G has a unit element.

4. 8A2G9A�12G z.d.d. A �A�1 = E: Each element in G has an inverse.

If also holds:
5. 8A;B2G ) A �B = B �A the group is called Abelian or commutative.

13.1.2 The Cayley table

Each element arises only once in each row and column of the Cayley- or multiplication table: because
EAi = A�1k (AkAi) = Ai each Ai appears once. There are h positions in each row and column when
there are h elements in the group so each element appears only once.

13.1.3 Conjugated elements, subgroups and classes

B is conjugate to A if 9X2G such that B = XAX�1. Then A is also conjugate to B because
B = (X�1)A(X�1)�1.
If B and C are conjugate to A, B is also conjugate with C.

A subgroup is a subset of G which is also a group w.r.t. the same operation.

A conjugacy class is the maximum collection of conjugated elements. Each group can be split up in
conjugacy classes. Some theorems:

� All classes are completely disjoint.

� E is a class itself: for each other element in this class would hold: A = XEX�1 = E.

� E is the only class which is also a subgroup because all other classes have no unit element.

� In an Abelian group each element is a separate class.

The physical interpretation of classes: elements of a group are usually symmetry operations which
map a symmetrical object into itself. Elements of one class are then the same kind of operations.
The opposite need not to be true.

71
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13.1.4 Isomor�sm and homomor�sm; representations

Two groups are isomorphic if they have the same multiplication table. The mapping from group G1
to G2, so that the multiplication table remains the same is a homomorphic mapping. It need not be
isomorphic.

A representation is a homomorphic mapping of a group to a group of square matrices with the usual
matrix multiplication as the combining operation. This is symbolized by �. The following holds:

�(E) = II ; �(AB) = �(A)�(B) ; �(A�1) = [�(A)]�1

For each group there are 3 possibilities for a representation:

1. A faithful representation: all matrices are di�erent.

2. The representation A! det(�(A)).

3. The identical representation: A! 1.

An equivalent representation is obtained by performing an unitary base transformation: �0(A) =
S�1�(A)S.

13.1.5 Reducible and irreducible representations

If the same unitary transformation can bring all matrices of a representation � in the same block
structure the representation is called reducible:

�(A) =

�
�(1)(A) 0

0 �(2)(A)

�
This is written as: � = �(1) � �(2). If this is not possible the representation is called irreducible.

The number of irreducible representations equals the number of conjugacy classes.

13.2 The fundamental orthogonality theorem

13.2.1 Schur's lemma

Lemma: Each matrix which commutes with all matrices of an irreducible representation is a constant
�II, where II is the unit matrix. The opposite is (of course) also true.

Lemma: If there exists a matrix M so that for two irreducible representations of group G, (1)(Ai)
and (2)(Ai), holds: M(1)(Ai) = (2)(Ai)M , than the representations are equivalent, or M = 0.

13.2.2 The fundamental orthogonality theorem

For a set of unequivalent, irreducible, unitary representations holds that, if h is the number of elements

in the group and `i is the dimension of the ith� representation:X
R2G

�(i)��� (R)�(j)��(R) =
h

`i
�ij������

13.2.3 Character

The character of a representation is given by the trace of the matrix and is therefore invariant for

base transformations: �(j)(R) = Tr(�(j)(R))

Also holds, with Nk the number of elements in a conjugacy class:
X
k

�(i)�(Ck)�
(j)(Ck)Nk = h�ij

Theorem:
nX
i=1

`2i = h
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13.3 The relation with quantum mechanics

13.3.1 Representations, energy levels and degeneracy

Consider a set of symmetry transformations ~x0 = R~x which leave the HamiltonianH invariant. These
transformations are a group. An isomor�c operation on the wavefunction is given by: PR (~x) =
 (R�1~x). This is considered an active rotation. These operators commute with H: PRH = HPR,
and leave the volume element unchanged: d(R~x) = d~x.

PR is the symmetry group of the physical system. It causes degeneracy: if  n is a solution of
H n = En n than also holds: H(PR n) = En(PR n). A degeneracy which is not the result of a
symmetry is called an accidental degeneracy.

Assume an `n-fold degeneracy at En: then choose an orthonormal set  (n)� , � = 1; 2; : : : ; `n. The

function PR 
(n)
� is in the same subspace: PR 

(n)
� =

`nX
�=1

 (n)� �(n)�� (R)

where �(n) is an irreducible, unitary representation of the symmetry group G of the system. Each
n corresponds with another energy level. One can purely mathematical derive irreducible represen-
tations of a symmetry group and label the energy levels with a quantum number this way. A �xed

choice of �(n)(R) de�nes the base functions  (n)� . This way one can also label each separate base
function with a quantum number.

Particle in a periodical potential: the symmetry operation is a cyclic group: note the operator

describing one translation over one unit as A. Then: G = fA;A2; A3; : : : ; Ah = Eg.
The group is Abelian so all irreducible representations are one-dimensional. For 0 � p � h�1 follows:

�(p)(An) = e2�ipn=h

If one de�nes: k = �2�p
ah

�
mod

2�

a

�
, so: PA p(x) =  p(x � a) = e2�ip=h p(x), this gives Bloch's

theorem:  k(x) = uk(x)e
ikx, with uk(x� a) = uk(x).

13.3.2 Breaking of degeneracy by a perturbation

Suppose the unperturbed system has HamiltonianH0 and symmetry group G0. The perturbed system
has H = H0 + V, and symmetry group G � G0. If �(n)(R) is an irreducible representation of G0, it is
also a representation of G but not all elements of �(n) in G0 are also in G. The representation then
usually becomes reducible: �(n) = �(n1) � �(n2) � : : :. The degeneracy is then (possibly partially)
removed: see the �gure below.

Spectrum H0 Spectrum H

`n

`n3 = dim(�(n3))

`n2 = dim(�(n2))
`n1 = dim(�(n1))

Theorem: The set of `n degenerated eigenfunctions  (n)� with energy En is a basis for an `n-
dimensional irreducible representation �(n) of the symmetry group.

13.3.3 The construction of a base function

Each function F in con�guration space can be decomposed into symmetry types: F =
nX
j=1

`jX
�=1

f (j)�
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The following operator extracts the symmetry types: 
`j
h

X
R2G

�(j)��� (R)PR

!
F = f (j)�

This is expressed as: f (j)� is the part of F that transforms according to the �th� row of �(j).

F can also be expressed in base functions ': F =
P
aj�

caj�'
(aj)
� . The functions f (j)� are in general not

transformed into each other by elements of the group. However, this does happen if cja� = cja.

Theorem: Two wavefunctions transforming according to non-equivalent unitary representations or
according to di�erent rows of an unitary irreducible representation are orthogonal:
h'(i)� j (j)� i � �ij���, and h'(i)� j (i)� i is independent of �.

13.3.4 The direct product of representations

Consider a physical system existing of two subsystems. The subspace D(i) of the system trans-

forms according to �(i). Basefunctions are '(i)� (~xi), 1 � � � `i. Now form all `1 � `2 products

'
(1)
� (~x1)'

(2)
� (~x2). These de�ne a space D(1) 
D(2).

These product functions transform as:

PR('
(1)
� (~x1)'

(2)
� (~x2)) = (PR'

(1)
� (~x1))(PR'

(2)
� (~x2))

In general the space D(1) 
D(2) can be split up in a number of invariant subspaces:

�(1) 
 �(2) =
X
i

ni�
(i)

A useful tool for this reduction is that for the characters hold:

�(1)(R)�(2)(R) =
X
i

ni�
(i)(R)

13.3.5 Clebsch-Gordan coe�cients

With the reduction of the direct-product matrix w.r.t. the basis '(i)� '(j)� one uses a new basis '(a�)� .
These base functions lie in subspaces D(ak). The unitary base transformation is given by:

'(ak)� =
X
��

'(i)� '(j)� (i�j�jak�)

and the inverse transformation by: '(i)� '
(j)
� =

X
ak�

'(a�)� (ak�ji�j�)

In essence the Clebsch-Gordan coe�cients are dot products: (i�j�jak�) := h'(i)k '
(j)
� j'(ak)� i

13.3.6 Symmetric transformations of operators, irreducible tensor opera-
tors

Observables (operators) transform as follows under symmetry transformations: A0 = PRAP
�1
R . If a

set of operators A(j)
� with 0 � � � `j transform into each other under the transformations of G holds:

PRA
(j)
� P�1

R =
X
�

A(j)
� �(j)�� (R)

If �(j) is irreducible they are called irreducible tensor operators A(j) with components A(j)
� .
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An operator can also be decomposed into symmetry types: A =
P
jk
a
(j)
k , with:

a(j)� =

 
`j
h

X
R2G

�(j)��� (R)

!
(PRAP

�1
R )

Theorem: Matrix elements Hij of the operator H which is invariant under 8A2G , are 0 between
states which transform according to non-equivalent irreducible unitary representations or according

to di�erent rows of such a representation. Further h'(i)� jHj (i)� i is independent of �. For H = 1 this
becomes the previous theorem.

This is applied in quantum mechanics in perturbation theory and variational calculus. Here one tries
to diagonalize H. Solutions can be found within each category of functions '(i)� with common i and
�: H is already diagonal in categories as a whole.
Perturbation calculus can be applied independent within each category. With variational calculus
the try function can be chosen within a separate category because the exact eigenfunctions transform
according to a row of an irreducible representation.

13.3.7 The Wigner-Eckart theorem

Theorem: The matrix element h'(i)� jA(j)
� j (k)� i can only be 6= 0 if �(j) 
 �(k) = : : :� �(i) � : : :. If

this is the case holds (if �(i) appears only once, otherwise one has to sum over a):

h'(i)� jA(j)
� j (k)� i = (i�jj�k�)h'(i)kA(j)k (k)i

This theorem can be used to determine selection rules: the probability of a dipole transition is given
by (~� is the direction of polarization of the radiation):

PD =
8�2e2f3jr12j2

3�h"0c3
with r12 = hl2m2j~� � ~r jl1m1i

Further it can be used to determine intensity ratios: if there is only one value of a the ratio of
the matrix elements are the Clebsch-Gordan coe�cients. For more a-values relations between the
intensity ratios can be stated. However, the intensity ratios are also dependent on the occupation of
the atomic energy levels.

13.4 Continuous groups

Continuous groups have h = 1. However, not all groups with h = 1 are continuous, e.g. the
translation group of an spatially in�nite periodic potential is not continuous but does have h =1.

13.4.1 The 3-dimensional translation group

For the translation of wavefunctions over a distance a holds: Pa (x) =  (x � a). Taylor expansion
near x gives:

 (x� a) =  (x) � ad (x)
dx

+
1

2
a2
d2 (x)

dx2
�+ : : :

Because the momentum operator in quantum mechanics is given by: px =
�h

i

@

@x
, this can be written

as:

 (x� a) = e�iapx=�h (x)
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13.4.2 The 3-dimensional rotation group

This group is called SO(3) because a faithful representation can be constructed from orthogonal 3�3
matrices with a determinant of +1.

For an in�nitesimal rotation around the x-axis holds:

P��x (x; y; z) �  (x; y + z��x; z � y��x)
=  (x; y; z) +

�
z��x

@

@y
� y��x @

@z

�
 (x; y; z)

=

�
1� i��xLx

�h

�
 (x; y; z)

Because the angular momentum operator is given by: Lx =
�h

i

�
z
@

@y
� y @

@z

�
.

So in an arbitrary direction holds: Rotations: P�;~n = exp(�i�(~n � ~J )=�h)
Translations: Pa;~n = exp(�ia(~n � ~p )=�h)

Jx, Jy and Jz are called the generators of the 3-dim. rotation group, px, py and pz are called the
generators of the 3-dim. translation group.

The commutation rules for the generators can be derived from the properties of the group for multi-
plications: translations are interchangeable $ pxpy � pypx = 0.
Rotations are not generally interchangeable: consider a rotation around axis ~n in the xz-plane over
an angle �. Then holds: P�;~n = P��;yP�;xP�;y, so:

e�i�(~n�
~J )=�h = ei�Jy=�he�i�Jx=�he�i�Jy=�h

If � and � are very small and are expanded to second order, and the corresponding terms are put
equal with ~n � ~J = Jx cos � + Jz sin �, it follows from the �� term: JxJy � JyJx = i�hJz.

13.4.3 Properties of continuous groups

The elements R(p1; :::; pn) depend continuously on parameters p1; :::; pn. For the translation group
this are e.g. anx, any and anz. It is demanded that the multiplication and inverse of an element R
depend continuously on the parameters of R.

The statement that each element arises only once in each row and column of the Cayley table holds
also for continuous groups. The notion conjugacy class for continuous groups is de�ned equally as for
discrete groups. The notion representation is �tted by demanding continuity: each matrix element
depends continuously on pi(R).

Summation over all group elements is for continuous groups replaced by an integration. If f(R) is a
function de�ned on G, e.g. ���(R), holds:Z

G

f(R)dR :=

Z
p1

� � �
Z
pn

f(R(p1; :::; pn))g(R(p1; :::; pn))dp1 � � �dpn

Here, g(R) is the density function.

Because of the properties of the Cayley table is demanded:
R
f(R)dR =

R
f(SR)dR. This �xes

g(R) except for a constant factor. De�ne new variables p0 by: SR(pi) = R(p0i). If one writes:
dV := dp1 � � �dpn holds:

g(S) = g(E)
dV

dV 0

Here,
dV

dV 0 is the Jacobian:
dV

dV 0 = det

 
@pi
@p0j

!
, and g(E) is constant.
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For the translation group holds: g(~a) = constant = g(~0) because g(a~n )d~a0 = g(~0)d~a and d~a0 = d~a.

This leads to the fundamental orthogonality theorem:Z
G

�(i)��� (R)�(j)��(R)dR =
1

`i
�ij������

Z
G

dR

and for the characters hold: Z
G

�(i)�(R)�(j)(R)dR = �ij

Z
G

dR

Compact groups are groups with a �nite group volume:
R
G dR <1.

13.5 The group SO(3)

One can take 2 parameters for the direction of the rotational axis and one for the angle of rotation '.
The parameter space is a collection points '~n within a sphere with radius �. The diametrical points
on this sphere are equivalent because R~n;� = R~n;�� .

Another way to de�ne parameters is by means of Eulers angles. If �, � and  are the 3 Euler angles,
de�ned as:

1. The spherical angles of axis 3 w.r.t. xyz are �; ' := �; �. Now a rotation around axis 3 remains
possible.

2. The spherical angles of the z-axis w.r.t. 123 are �; ' := �; � � .
then the rotation of a quantum mechanical system is described by:

 ! e�i�Jz�he�i�Jy=�he�iJz=�h . So PR = e�i"(~n�
~J )=�h.

All irreducible representations of SO(3) can be constructed from the behaviour of the spherical har-
monics Ylm(�; ') with �l � m � l and for a �xed l:

PRYlm(�; ') =
X
m0

Ylm0 (�; ')D(l)
mm0 (R)

D(l) is an irreducible representation of dimension 2l + 1. The character of D(l) is given by:

�(l)(�) =
lX

m=�l

eim� = 1 + 2
lX

k=0

cos(k�) =
sin([l + 1

2 ]�)

sin(12�)

In the performed derivation � is the rotational angle around the z-axis. This expression is valid for
all rotations over an angle � because the classes of SO(3) are rotations around the same angle around
an axis with an arbitrary orientation.

Via the fundamental orthogonality theorem for characters one obtains the following expression for
the density function (which is normalized so that g(0) = 1):

g(�) =
sin2(12�)

(12�)
2

With this result one can see that the given representations of SO(3) are the only ones: the character
of another representation �0 would have to be ? to the already found ones, so �0(�) sin2(12�) = 08�
) �0(�) = 08�. This is contradictory because the dimension of the representation is given by �0(0).

Because fermions have an half-odd integer spin the states  sms with s =
1
2 and ms = �1

2 constitute
a 2-dim. space which is invariant under rotations. A problem arises for rotations over 2�:

 1
2
ms
! e�2�iSz=�h 1

2
ms

= e�2�ims 1
2
ms

= � 1
2
ms
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However, in SO(3) holds: Rz;2� = E. So here holds E ! �II. Because observable quantities can
always be written as h�j i or h�jAj i, and are bilinear in the states, they do not change sign if the
states do. If only one state changes sign the observable quantities do change.

The existence of these half-odd integer representations is connected with the topological properties
of SO(3): the group is two-fold coherent through the identi�cation R0 = R2� = E.

13.6 Applications to quantum mechanics

13.6.1 Vectormodel for the addition of angular momentum

If two subsystems have angular momentum quantum numbers j1 and j2 the only possible values for
the total angular momentum are J = j1+ j2; j1+ j2� 1; :::; jj1� j2j. This can be derived from group
theory as follows: from �(j1)(�)�(j2)(�) =

P
J
nj�(J)(�) follows:

D(j1) 
D(j2) = D(j1+j2) �D(j1+j2�1) � :::�D(jj1�j2j)

The states can be characterized by quantum numbers in two ways: with j1;m1; j2;m2 and with
j1; j2; J;M . The Clebsch-Gordan coe�cients, for SO(3) called the Wigner coe�cients, can be chosen
real, so:  j1j2JM =

P
m1m2

 j1m1j2m2
(j1m1j2m2jJM )

 j1m1j2m2
=

P
JM

 j1j2JM (j1m1j2m2jJM )

13.6.2 Irreducible tensor operators, matrixelements and selection rules

Some examples of the behaviour of operators under SO(3)

1. Suppose j = 0: this gives the identical representation with `j = 1. This state is described by a

scalar operator. Because PRA
(0)
0 P�1

R = A
(0)
0 this operator is invariant, e.g. the Hamiltonian of

a free atom. Then holds: hJ 0M 0jHjJM i � �MM 0�JJ 0 .

2. A vector operator: ~A = (Ax; Ay; Az). The cartesian components of a vector operator transform
equally as the cartesian components of ~r by de�nition. So for rotations around the z-axis holds:

D(R�;z) =

0
@ cos� � sin� 0

sin� cos� 0
0 0 1

1
A

The transformed operator has the same matrix elements w.r.t. PR and PR�:

PR jPRAxP�1

R jPR�
�
= h jAxj�i, and �(R�;z) = 1 + 2 cos(�). According to the equation for

characters this means one can choose base operators which transform like Y1m(�; '). These turn
out to be the spherical components:

A(1)
+1 = �

1p
2
(Ax + iAy); A(1)

0 = Az; A(1)
�1 =

1p
2
(Ax � iAy)

3. A cartesian tensor of rank 2: Tij is a quantity which transforms under rotations like UiVj , where
~U and ~V are vectors. So Tij transforms like PRTijP

�1
R =

P
kl
TklDki(R)Dlj (R), so like D(1) 


D(1) = D(2) � D(1) � D(0). The 9 components can be split in 3 invariant subspaces with
dimension 1 (D(0)), 3 (D(1)) and 5 (D(2)). The new base operators are:

I. Tr(T ) = Txx + Tyy + Tzz . This transforms as the scalar ~U � ~V , so as D(0).

II. The 3 antisymmetric components Az = 1
2 (Txy � Tyx), etc. These transform as the vector

~U � ~V , so as D(1).

III. The 5 independent components of the traceless, symmetric tensor S:

Sij =
1
2(Tij + Tji)� 1

3�ijTr(T ). These transform as D(2).
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Selection rules for dipole transitions

Dipole operators transform as D(1): for an electric dipole transfer is the operator e~r, for a magnetic
e
2m (

~L + 2~S).

From the Wigner-Eckart theorem follows: hJ 0M 0jA(1)
� jJM i = 0 except D(J 0) is a part ofD(1)
D(J) =

D(J+1) � D(J) � D(jJ�1j). This means that J 0 2 fJ + 1; J; jJ � 1jg: J 0 = J or J 0 = J � 1, except
J 0 = J = 0.

Land�e-equation for the anomalous Zeeman splitting

According to Land�e's model the interaction between a magnetic moment with an external magnetic
�eld is determined by the projection of ~M on ~J because ~L and ~S precede fast around ~J . This can
also be understood from the Wigner-Eckart theorem: from this follows that the matrix elements from
all vector operators show a certain proportionality. For an arbitrary operator ~A follows:

h�jm0j ~Aj�jmi = h�jmj
~A � ~J j�jmi

j(j + 1)�h2
h�jm0j ~J j�jmi

13.7 Applications to particle physics

The physics of a system does not change after performing a transformation  0 = ei� where � is a
constant. This is a global gauge transformation: the phase of the wavefunction changes everywhere
by the same amount.

There exists some freedom in the choice of the potentials ~A and � at the same ~E and ~B: gauge

transformations of the potentials do not change ~E and ~B (See chapter 2 and 10). The solution  0 of
the Schr�odinger equation with the transformed potentials is:  0 = e�iqf(~r;t) .

This is a local gauge transformation: the phase of the wavefunction changes di�erent at each position.
The physics of the system does not change if ~A and � are also transformed. This is now stated as a
guide principle: the \right of existence" of the electromagnetic �eld is to allow local gauge invariance.

The gauge transformations of the EM-�eld form a group: U(1), unitary 1� 1-matrices. The split-o�
of charge in the exponent is essential: it allows one gauge �eld for all charged particles, independent
of their charge.

This concept is generalized: particles have a \special charge" Q. The group elements now are PR =
exp(�iQ�).
Other force �elds than the electromagnetic �eld can also be understood this way. The weak interac-
tion together with the electromagnetic interaction can be described by a force �eld that transforms
according to U(1)
SU(2), and consists of the photon and three intermediary vector bosons. The
colour force is described by SU(3), and has a gauge �eld that exists of 8 types of gluons.

In general the group elements are given by PR = exp(�i~T � ~�), where �n are real constants and Tn
operators (generators), like Q. The commutation rules are given by [Ti; Tj ] = i

P
k
cijkTk. The cijk

are the structure constants of the group. For SO(3) these constants are cijk = "ijk, here "ijk is the
complete antisymmetric tensor with "123 = +1.

These constants can be found with the help of group product elements: because G is closed holds:
ei~��~T ei~�

0�~T e�i~��~T e�i~�
0�~T = e�i~�

00�~T . Taylor expansion and setting equal �n�0m-terms results in the
commutation rules.

The group SU(2) has 3 free parameters: because it is unitary there are 4 real conditions over 4
complex parameters, and the determinant has to be +1, remaining 3 free parameters.

Each unitary matrix U can be written as: U = e�iH . Here, H is a Hermitian matrix. Further it
always holds that: det(U ) = e�iTr(H).
For each matrix of SU(2) holds that Tr(H)=0. Each Hermitian, traceless 2�2 matrix can be written
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as a linear combination of the 3 Pauli-matrices �i. So these matrices are a choice for the operators
of SU(2). One can write: SU(2)=fexp(�1

2 i~� � ~�)g.
In abstraction, one can consider an isomorphic group where only the commutation rules are considered
to be known regarding the operators Ti: [T1; T2] = iT3, etc.

In elementary particle physics the Ti can be interpreted e.g. as the isospin operators. Elementary
particles can be classi�ed in isospin-multiplets, these are the irreducible representations of SU(2).
The classi�cation is:

1. The isospin-singlet � the identical representation: e�i~T �~� = 1) Ti = 0

2. The isospin-doublet � the faithful representation of SU(2) on 2� 2 matrices.

The group SU(3) has 8 free parameters. (The group SU(N ) has N2 � 1 free parameters). The
Hermitian, traceless operators are 3 SU(2)-subgroups in the ~e1~e2, ~e1~e3 and the ~e2~e3 plane. This gives
9 matrices, which are not all 9 linear independent. By taking a linear combination one gets 8 matrices.

In the Lagrange density for the colour force one has to substitute
@

@x
! D

Dx
:=

@

@x
�

8X
i=1

TiA
i
x

The terms of 3rd and 4th power in A show that the colour �eld interacts with itself.
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Nuclear physics

14.1 Nuclear forces

The mass of a nucleus is given by:

Mnucl = Zmp +Nmn � Ebind=c
2

The binding energy per nucleon is given
in the �gure at the right. The top is at
56
26Fe, the most stable nucleus. With the
constants

a1 = 15.760 MeV
a2 = 17.810 MeV
a3 = 0.711 MeV
a4 = 23.702 MeV
a5 = 34.000 MeV
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and A = Z +N , in the droplet or collective model of the nucleus the binding energy Ebind is given by:

Ebind

c2
= a1A � a2A2=3 � a3Z(Z � 1)

A1=3
� a4 (N � Z)

2

A
+ �a5A

�3=4

These terms arise from:

1. a1: Binding energy of the strong nuclear force, approximately � A.
2. a2: Surface correction: the nucleons near the surface are less bound.

3. a3: Coulomb repulsion between the protons.

4. a4: Asymmetry term: a surplus of protons or neutrons has a lower binding energy.

5. a5: Pair o� e�ect: nuclei with an even number of protons or neutrons are more stable because
groups of two protons or neutrons have a lower energy. The following holds:

Z even, N even: � = +1, Z odd, N odd: � = �1.
Z even, N odd: � = 0, Z odd, N even: � = 0.

The Yukawa potential can be derived if the nuclear force can to �rst approximation, be considered
as an exchange of virtual pions:

U (r) = �W0r0
r

exp

�
� r

r0

�
With �E ��t � �h, E = m0c2 and r0 = c�t follows: r0 = �h=m0c.

In the shell model of the nucleus one assumes that a nucleon moves in an average �eld of other
nucleons. Further, there is a contribution of the spin-orbit coupling � ~L � ~S: �Vls = 1

2(2l + 1)�h!.
So each level (n; l) is split in two, with j = l � 1

2 , where the state with j = l + 1
2 has the lowest

energy. This is just the opposite for electrons, which is an indication that the L � S interaction
is not electromagnetical. The energy of a 3-dimensional harmonic oscillator is E = (N + 3

2)�h!.
N = nx+ny +nz = 2(n� 1)+ l where n � 1 is the main oscillator number. Because �l � m � l and

81
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ms = �1
2�h there are 2(2l + 1) substates which exist independently for protons and neutrons. This

gives rise to the so called magical numbers: nuclei where each state in the outermost level are �lled
are particulary stable. This is the case if N or Z 2 f2; 8; 20; 28; 50; 82;126g.

14.2 The shape of the nucleus

A nucleus is to �rst approximation spherical with a radius of R = R0A1=3. Here, R0 � 1:4 � 10�15 m,
constant for all nuclei. If the nuclear radius is measured including the charge distribution one obtains
R0 � 1:2 � 10�15 m. The shape of oscillating nuclei can be described by spherical harmonics:

R = R0

"
1 +

X
lm

almY
m
l (�; ')

#

l = 0 gives rise to monopole vibrations, density vibrations, which can be applied to the theory of
neutron stars. l = 1 gives dipole vibrations, l = 2 quadrupole, with a2;0 = � cos  and a2;�2 =
1
2

p
2� sin  where � is the deformation factor and  the shape parameter. The multipole moment

is given by �l = ZerlY m
l (�; '). The parity of the electric moment is �E = (�1)l, of the magnetic

moment �M = (�1)l+1.

There are 2 contributions to the magnetic moment: ~ML =
e

2mp

~L and ~MS = gS
e

2mp

~S.

where gS is the spin-gyromagnetic ratio. For protons holds gS = 5:5855 and for neutrons gS =
�3:8263. The z-components of the magnetic moment are given byML;z = �Nml andMS;z = gS�NmS .

The resulting magnetic moment is related to the nuclear spin I according to ~M = gI(e=2mp)~I. The
z-component is then Mz = �NgImI .

14.3 Radioactive decay

The number of nuclei decaying is proportional to the number of nuclei: _N = ��N . This gives for the
number of nuclei N : N (t) = N0 exp(��t). The half life time follows from � 1

2
� = ln(2). The average

life time of a nucleus is � = 1=�. The probability that N nuclei decay within a time interval is given
by a Poisson distribution:

P (N )dt = N0
�N e��

N !
dt

If a nucleus can decay into more �nal states then holds: � =
P
�i. So the fraction decaying into

state i is �i=
P
�i. There are 5 types of natural radioactive decay:

1. �-decay: the nucleus emits a He2+ nucleus. Because nucleons tend to order themselves in groups
of 2p+2n this can be considered as a tunneling of a He2+ nucleus through a potential barrier.
The tunnel probability P is

P =
incoming amplitude

outgoing amplitude
= e�2G with G =

1

�h

s
2m

Z
[V (r)�E]dr

G is called the Gamow factor.

2. �-decay. Here a proton changes into a neutron or vice versa:
p+ ! n0 +W+ ! n0 + e+ + �e, and n0 ! p+ +W� ! p+ + e� + �e.

3. Electron capture: here, a proton in the nucleus captures an electron (usually from the K-shell).

4. Spontaneous �ssion: a nucleus breaks apart.
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5. -decay: here the nucleus emits a high-energetic photon. The decay constant is given by

� =
P (l)

�h!
� E

(�hc)2

�
ER

�hc

�2l
� 10�4l

where l is the quantum number for the angular momentum and P the radiated power. Usually
the decay constant of electric multipole moments is larger than the one of magnetic multipole
moments. The energy of the photon is E = Ei � Ef � TR, with TR = E2

=2mc
2 the recoil

energy, which can usually be neglected. The parity of the emitted radiation is �l = �i � �f .
With I the quantum number of angular momentum of the nucleus, L = �h

p
I(I + 1), holds the

following selection rule: j~Ii � ~If j � �l � j~Ii + ~If j.

14.4 Scattering and nuclear reactions

14.4.1 Kinetic model

If a beam with intensity I hits a target with density n and length x (Rutherford scattering) the
number of scatterings R per unit of time is equal to R = Inx�. From this follows that the intensity
of the beam decreases as �dI = In�dx. This results in I = I0e�n�x = I0e��x.

Because dR = R(�; ')d
=4� = Inxd� it follows:
d�

d

=
R(�; ')

4�nxI

If N particles are scattered in a material with density n then holds:
�N

N
= n

d�

d

�
�x

For Coulomb collisions holds:
d�

d


����
C

=
Z1Z2e2

8�"0�v20

1

sin4(12�)

14.4.2 Quantum mechanical model for n-p scattering

The initial state is a beam of neutrons moving along the z-axis with wavefunction  init = eikz

and current density Jinit = vj init j2 = v. At large distances from the scattering point they have
approximately a spherical wavefunction  scat = f(�)eikr=r where f(�) is the scattering amplitude.
The total wavefunction is then given by

 =  in +  scat = eikz + f(�)
eikr

r

The particle ux of the scattered particles is vj scatj2 = vjf(�)j2d
. From this it follows that �(�) =
jf(�)j2. The wavefunction of the incoming particles can be expressed as a sum of angular momentum
wavefunctions:

 init = eikz =
X
l

 l

The impact parameter is related to the angular momentum with L = bp = b�hk, so bk � l. At very
low energy only particles with l = 0 are scattered, so

 =  00 +
X
l>0

 l and  0 =
sin(kr)

kr

If the potential is approximately rectangular holds:  00 = C
sin(kr + �0)

kr

The cross section is then �(�) =
sin2(�0)

k2
so � =

Z
�(�)d
 =

4� sin2(�0)

k2

At very low energies holds: sin2(�0) =
�h2k2=2m

W0 +W

with W0 the depth of the potential well. At higher energies holds: � =
4�

k2

X
l

sin2(�l)
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14.4.3 Conservation of energy and momentum in nuclear reactions

If a particle P1 collides with a particle P2 which is in rest w.r.t. the laboratory system and other
particles are created, so

P1 + P2 !
X
k>2

Pk

the total energy Q gained or required is given by Q = (m1 +m2 � P
k>2

mk)c2.

The minimal required kinetic energy T of P1 in the laboratory system to initialize the reaction is

T = �Qm1 +m2 +
P
mk

2m2

If Q < 0 there is a threshold energy.

14.5 Radiation dosimetry

Radiometric quantities determine the strength of the radiation source(s). Dosimetric quantities are
related to the energy transfer from radiation to matter. Parameters describing a relation between
those are called interaction parameters. The intensity of a beam of particles in matter decreases
according to I(s) = I0 exp(��s). The deceleration of a heavy particle is described by the Bethe-Bloch
equation:

dE

ds
� q2

v2

The uention is given by � = dN=dA. The ux is given by � = d�=dt. The energy loss is de�ned
by 	 = dW=dA, and the energy ux density  = d	=dt. The absorption coe�cient is given by
� = (dN=N )=dx. The mass absorption coe�cient is given by �=%.

The radiation dose X is the amount of charge produced by the radiation per unit of mass, with unit
C/kg. An old unit is the R�ontgen: 1Ro= 2:58 � 10�4 C/kg. With the energy-absorption coe�cient
�E follows:

X =
dQ

dm
=
e�E
W%

	

where W is the energy required to disjoin an elementary charge.

The absorbed dose D is given by D = dEabs=dm, with unit Gy=J/kg. An old unit is the rad: 1
rad=0.01 Gy. The dose tempo is de�ned as _D. It can be derived that

D =
�E
%
	

The Kerma K is the amount of kinetic energy of secundary produced particles which is produced per
mass unit of the radiated object.

The equivalent dose H is a weight average of the absorbed dose per type of radiation, where for each
type radiation the e�ects on biological material is used for the weight factor. These weight factors
are called the quality factors. Their unit is Sv. H = QD. If the absorption is not equally distributed
also weight factors w per organ need to be used: H =

P
wkHk. For some types of radiation holds:

Radiation type Q

R�ontgen, gamma radiation 1
�, electrons, mesons 1
Thermic neutrons 3 to 5
Fast neutrons 10 to 20
protons 10
�, �ssion products 20



Chapter 15

Quantum �eld theory & Particle

physics

15.1 Creation and annihilation operators

A state with more particles can be described by a collection occupation numbers jn1n2n3 � � �i. Hence
the vacuum state is given by j000 � � �i. This is a complete description because the particles are
indistinguishable. The states are orthonormal:

hn1n2n3 � � � jn01n02n03 � � �i =
1Y
i=1

�nin0i

The time-dependent state vector is given by

	(t) =
X

n1n2���

cn1n2���(t)jn1n2 � � �i

The coe�cients c can be interpreted as follows: jcn1n2���j2 is the probability to �nd n1 particles
with momentum ~k1, n2 particles with momentum ~k2, etc., and h	(t)j	(t)i = P jcni(t)j2 = 1. The
expansion of the states in time is described by the Schr�odinger equation

i
d

dt
j	(t)i = Hj	(t)i

where H = H0 +Hint. H0 is the Hamiltonian for free particles and keeps jcni(t)j2 constant, Hint is
the interaction Hamiltonian and can increase or decrease a c2 at the cost of others.

All operators which can change occupation numbers can be expanded in the a and ay operators. a is
the annihilation operator and ay the creation operator, and:

a(~ki)jn1n2 � � �ni � � �i =
p
ni jn1n2 � � �ni � 1 � � �i

ay(~ki)jn1n2 � � �ni � � �i =
p
ni + 1 jn1n2 � � �ni + 1 � � �i

Because the states are normalized holds aj0i = 0 and a(~ki)ay(~ki)jnii = nijnii. So aay is an occupation
number operator. The following commutation rules can be derived:

[a(~ki); a(~kj)] = 0 ; [ay(~ki); a
y(~kj)] = 0 ; [a(~ki); a

y(~kj)] = �ij

Hence for free spin-0 particles holds: H0 =
P
i
ay(~ki)a(~ki)�h!ki

15.2 Classical and quantum �elds

Starting with a real �eld ��(x) (complex �elds can be split in a real and an imaginary part), the La-
grange density L is a function of the position x = (~x; ict) through the �elds: L = L(��(x); @���(x)).
The Lagrangian is given by L =

R L(x)d3x. Using the variational principle �I(
) = 0 and with the
action-integral I(
) =

R L(��; @���)d4x the �eld equation can be derived:

@L
@��

� @

@x�

@L
@(@���)

= 0
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The conjugated �eld is, analogous to momentum in classical mechanics, de�ned as:

��(x) =
@L
@ _��

With this, the Hamilton density becomes H(x) = �� _�� �L(x).
Quantization of a classical �eld is analogous to quantization in point mass mechanics: the �eld
functions are considered as operators obeying certain commutation rules:

[��(~x);��(~x0)] = 0 ; [��(~x);��(~x0)] = 0 ; [��(~x);��(~x0)] = i���(~x � ~x0)

15.3 The interaction picture

Some equivalent formulations of quantum mechanics are possible:

1. Schr�odinger picture: time-dependent states, time-independent operators.

2. Heisenberg picture: time-independent states, time-dependent operators.

3. Interaction picture: time-dependent states, time-dependent operators.

The interaction picture can be obtained from the Schr�odinger picture by an unitary transformation:

j�(t)i = eiH
S
0 j�S(t)i and O(t) = eiH

S
0OSe�iH

S
0

The index S denotes the Schr�odinger picture. From this follows:

i
d

dt
j�(t)i = Hint(t)j�(t)i and i

d

dt
O(t) = [O(t);H0]

15.4 Real scalar �eld in the interaction picture

It is easy to �nd that, with M := m2
0c
2=�h2, holds:

@

@t
�(x) = �(x) and

@

@t
�(x) = (r2 �M2)�(x)

From this follows that � obeys the Klein-Gordon equation (2 � M2)� = 0. With the de�nition
k20 = ~k2 +M2 := !2k and the notation ~k � ~x� ik0t := kx the general solution of this equation is:

�(x) =
1p
V

X
~k

1p
2!k

�
a(~k)eikx + ay(~k)e�ikx

�
; �(x) =

ip
V

X
~k

q
1
2!k

�
�a(~k)eikx + ay(~k)e�ikx

�
The �eld operators contain a volume V , which is used as normalization factor. Usually one can take
the limit V !1.

In general it holds that the term with e�ikx, the positive frequency part, is the creation part, and the
negative frequency part is the annihilation part.

the coe�cients have to be each others hermitian conjugate because � is hermitian. Because � has
only one component this can be interpreted as a �eld describing a particle with spin zero. From this
follows that the commutation rules are given by [�(x);�(x0)] = i�(x� x0) with

�(y) =
1

(2�)3

Z
sin(ky)

!k
d3k

�(y) is an odd function which is invariant for proper Lorentz transformations (no mirroring). This
is consistent with the previously found result [�(~x; t;�(~x0; t)] = 0. In general holds that �(y) = 0
outside the light cone. So the equations obey the locality postulate.

The Lagrange density is given by: L(�; @��) = �1
2(@��@��+m2�2). The energy operator is given

by:

H =

Z
H(x)d3x =

X
~k

�h!ka
y(~k)a(~k)
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15.5 Charged spin-0 particles, conservation of charge

The Lagrange density of charged spin-0 particles is given by: L = �(@��@��� +M2���).

Noether's theorem connects a continuous symmetry of L and an additive conservation law. Suppose
that L ((��)0; @�(��)0) = L (��; @���) and there exists a continuous transformation between �� and
��0 such as ��0 = �� + �f�(�). Then holds

@

@x�

�
@L

@(@���)
f�
�
= 0

This is a continuity equation ) conservation law. Which quantity is conserved depends on the
symmetry. The above Lagrange density is invariant for a change in phase �! �ei�: a global gauge
transformation. The conserved quantity is the current density J�(x) = �ie(�@������@��). Because
this quantity is 0 for real �elds a complex �eld is needed to describe charged particles. When this
�eld is quantized the �eld operators are given by

�(x) =
1p
V

X
~k

1p
2!k

�
a(~k)eikx + by(~k)e�ikx

�
and �y(x) =

1p
V

X
~k

1p
2!k

�
ay(~k)eikx + b(~k)e�ikx

�

Hence the energy operator is given by:

H =
X
~k

�h!k
�
ay(~k)a(~k) + by(~k)b(~k)

�

and the charge operator is given by:

Q(t) = �i
Z
J4(x)d

3x) Q =
X
~k

e
�
ay(~k)a(~k) � by(~k)b(~k)

�

From this follows that aya := N+(~k) is an occupation number operator for particles with a positive
charge and byb := N�(~k) is an occupation number operator for particles with a negative charge.

15.6 Field functions for spin-12 particles

Spin is de�ned by the behaviour of the solutions  of the Dirac equation. A scalar �eld � has the
property that, if it obeys the Klein-Gordon equation, the rotated �eld ~�(x) := �(��1x) also obeys
it. � denotes 4-dimensional rotations: the proper Lorentz transformations. These can be written as:

~�(x) = �(x)e�i~n�
~L with L�� = �i�h

�
x�

@

@x�
� x� @

@x�

�
For � � 3; � � 3 these are rotations, for � = 4; � 6= 4 these are Lorentz transformations.

A rotated �eld ~ obeys the Dirac equation if the following condition holds: ~ (x) = D(�) (��1x).

This results in the condition D�1�D = ����. One �nds: D = ei~n�~S with S�� = �i12�h�� . Hence:
~ (x) = e�i(S+L) (x) = e�iJ (x)

Then the solutions of the Dirac equation are given by:

 (x) = ur�(~p )e
�i(~p�~x�Et)

Here, r is an indication for the direction of the spin, and � is the sign of the energy. With the
notation vr(~p ) = ur�(�~p ) and ur(~p ) = ur+(~p ) one can write for the dot products of these spinors:

ur+(~p )u
r0
+(~p ) =

E

M
�rr0 ; ur�(~p )u

r0
�(~p ) =

E

M
�rr0 ; ur+(~p )u

r0
�(~p ) = 0
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Because of the factor E=M this is not relativistic invariant. A Lorentz-invariant dot product is de�ned
by ab := ay4b, where a := ay4 is a row spinor. From this follows:

ur(~p )ur
0

(~p ) = �rr0 ; vr(~p )vr
0

(~p ) = ��rr0 ; ur(~p )vr
0

(~p ) = 0

Combinations of the type aa give a 4� 4 matrix:

2X
r=1

ur(~p )ur(~p ) =
�i�p� +M

2M
;

2X
r=1

vr(~p )vr(~p ) =
�i�p� �M

2M

The Lagrange density which results in the Dirac equation and having the correct energy normalization
is:

L(x) = � (x)
�
�

@

@x�
+M

�
 (x)

and the current density is J�(x) = �ie � .

15.7 Quantization of spin-12 �elds

The general solution for the �eldoperators is in this case:

 (x) =

r
M

V

X
~p

1p
E

X
r

�
cr(~p )u

r(~p )eipx + dyr(~p )v
r (~p )e�ipx

�
and

 (x) =

r
M

V

X
~p

1p
E

X
r

�
cyr(~p )u

r(~p )e�ipx + dr(~p )vr (~p )e
ipx�

Here, cy and c are the creation respectively annihilation operators for an electron and dy and d the
creation respectively annihilation operators for a positron. The energy operator is given by

H =
X
~p

E~p

2X
r=1

�
cyr(~p )cr(~p )� dr(~p )dyr(~p )

�
To prevent that the energy of positrons is negative the operators must obey anti commutation rules
in stead of commutation rules:

[cr(~p ); c
y
r0(~p )]+ = [dr(~p ); d

y
r0(~p )]+ = �rr0�pp0 ; all other anti commutators are 0.

The �eld operators obey

[ �(x);  �(x
0)] = 0 ; [ �(x);  �(x0)] = 0 ; [ �(x);  �(x0)]+ = �iS�� (x� x0)

with S(x) =

�
�

@

@x�
�M

�
�(x)

The anti commutation rules give besides the positive-de�nite energy also the Pauli exclusion principle
and the Fermi-Dirac statistics: because cyr(~p )c

y
r(~p ) = �cyr(~p )cyr(~p ) holds: fcyr(p)g2 = 0. It appears

to be impossible to create two electrons with the same momentum and spin. This is the exclusion
principle. Another way to see this is the fact that fN+

r (~p )g2 = N+
r (~p ): the occupation operators

have only eigenvalues 0 and 1.

To avoid in�nite vacuum contributions to the energy and charge the normal product is introduced.
The expression for the current density now becomes J� = �ieN ( � ). This product is obtained by:

� Expand all �elds into creation and annihilation operators,

� Keep all terms which have no annihilation operators, or in which they are on the right of the
creation operators,

� In all other terms interchange the factors so that the annihilation operators go to the right.
By an interchange of two fermion operators add a minus sign, by interchange of two boson
operators not. Assume hereby that all commutators are zero.
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15.8 Quantization of the electromagnetic �eld

Starting with the Lagrange density L = �1
2

@A�
@x�

@A�
@x�

it follows for the �eld operators A(x):

A(x) =
1p
V

X
~k

1p
2!k

4X
m=1

�
am(~k)�

m(~k)eikx + ay(~k)�m(~k)�e�ikx
�

The operators obey [am(~k); a
y
m0 (~k)] = �mm0�kk0 . All other commutators are 0. m gives the polarization

direction of the photon: m = 1; 2 gives transversal polarized, m = 3 longitudinal polarized and m = 4
timelike polarized photons. Further holds:

[A�(x); A�(x
0)] = i���D(x� x0) with D(y) = �(y)jm=0

In spite of the fact that A4 = iV is imaginary in the classical case, A4 is still de�ned to be hermi-
tian because otherwise the sign of the energy becomes incorrect. By changing the de�nition of the
inner product in con�guration space the expectation values for A1;2;3(x) 2 IR and for A4(x) become
imaginary.

If the potentials satisfy the Lorentz gauge condition @�A� = 0 the E and B operators derived
from these potentials will satisfy the Maxwell equations. However, this gives problems with the
commutation rules. It is now demanded that only those states are permitted for which holds

@A+
�

@x�
j�i = 0

This results in:

�
@A�
@x�

�
= 0.

From this follows that (a3(~k) � a4(~k))j�i = 0. With a local gauge transformation one obtains
N3(~k) = 0 and N4(~k) = 0. However, this only applies to free EM-�elds: in intermediary states in
interactions there can exist longitudinal and timelike photons. These photons are also responsible for
the stationary Coulomb potential.

15.9 Interacting �elds and the S-matrix

The S(scattering)-matrix gives a relation between the initial and �nal states of an interaction:
j�(1)i = Sj�(�1)i. If the Schr�odinger equation is integrated:

j�(t)i = j�(�1)i � i
tZ

�1

Hint(t1)j�(t1)idt1

and perturbation theory is applied one �nds that:

S =
1X
n=0

(�i)n
n!

Z
� � �
Z
T fHint(x1) � � �Hint(xn)g d4x1 � � �d4xn �

1X
n=0

S(n)

Here, the T -operator means a time-ordered product: the terms in such a product must be ordered in
increasing time order from the right to the left so that the earliest terms act �rst. The S-matrix is
then given by: Sij = h�ijSj�ji = h�ij�(1)i.
The interaction Hamilton density for the interaction between the electromagnetic and the electron-
positron �eld is: Hint(x) = �J�(x)A�(x) = ieN ( � A�)
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When this is expanded as: Hint = ieN
�
( + +  �)�( + +  �)(A+

� +A�� )
�

eight terms appear. Each term corresponds with a possible process. The term ie +� 
+A�� acting

on j�i gives transitions where A�� creates a photon,  + annihilates an electron and  + annihilates a
positron. Only terms with the correct number of particles in the initial and �nal state contribute to a
matrix element h�ijSj�ji. Further the factors in Hint can create and thereafter annihilate particles:
the virtual particles.

The expressions for S(n) contain time-ordered products of normal products. This can be written
as a sum of normal products. The appearing operators describe the minimal changes necessary to
change the initial state into the �nal state. The e�ects of the virtual particles are described by the
(anti)commutator functions. Some time-ordened products are:

T f�(x)�(y)g = N f�(x)�(y)g + 1
2�

F(x� y)
T
n
 �(x) �(y)

o
= N

n
 �(x) �(y)

o
� 1

2S
F
��(x� y)

T fA�(x)A�(y)g = N fA�(x)A�(y)g + 1
2���D

F
�� (x� y)

Here, SF(x) = (�@� �M )�F(x), DF(x) = �F(x)jm=0 and

�F(x) =

8>>>><
>>>>:

1

(2�)3

Z
eikx

!~k
d3k if x0 > 0

1

(2�)3

Z
e�ikx

!~k
d3k if x0 < 0

The term 1
2�

F(x� y) is called the contraction of �(x) and �(y), and is the expectation value of the
time-ordered product in the vacuum state. Wick's theorem gives an expression for the time-ordened
product of an arbitrary number of �eld operators. The graphical representation of these processes
are called Feynman diagrams. In the x-representation each diagram describes a number of processes.
The contraction functions can also be written as:

�F(x) = lim
�!0

�2i
(2�)4

Z
eikx

k2 +m2 � i�d
4k and SF(x) = lim

�!0

�2i
(2�)4

Z
eipx

i�p� �M
p2 +M2 � i�d

4p

In the expressions for S(2) this gives rise to terms �(p + k � p0 � k0). This means that energy and
momentum is conserved. However, virtual particles do not obey the relation between energy and
momentum.

15.10 Divergences and renormalization

It turns out that higher orders contribute in�nite terms because only the sum p + k of the four-
momentum of the virtual particles is �xed. An integration over one of them becomes 1. In the
x-representation this can be understood because the product of two functions containing �-like singu-
larities is not well de�ned. This is solved by discounting all divergent diagrams in a renormalization
of e and M . It is assumed that an electron, if there would not be an electromagnetical �eld, would
have a mass M0 and a charge e0 unequal to the observed massM and charge e. In the Hamilton and
Lagrange density of the free electron-positron �eld appears M0. So this gives, with M =M0 +�M :

Le�p(x) = � (x)(�@� +M0) (x) = � (x)(�@� +M ) (x) + �M (x) (x)

and Hint = ieN ( � A�) � i�eN ( � A�).

15.11 Classi�cation of elementary particles

Elementary particles can be categorized as follows:
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1. Hadrons: these exist of quarks and can be categorized in:

I. Baryons: these exist of 3 quarks or 3 antiquarks.

II. Mesons: these exist of one quark and one antiquark.

2. Leptons: e�, ��, ��, �e, ��, �� , �e, ��, �� .

3. Field quanta: , W�, Z0, gluons, gravitons (?).

An overview of particles and antiparticles is given in the following table:

Particle spin (�h) B L T T3 S C B� charge (e) m0 (MeV) antipart.

u 1/2 1/3 0 1/2 1/2 0 0 0 +2=3 5 u
d 1/2 1/3 0 1/2 �1=2 0 0 0 �1=3 9 d
s 1/2 1/3 0 0 0 �1 0 0 �1=3 175 s
c 1/2 1/3 0 0 0 0 1 0 +2=3 1350 c
b 1/2 1/3 0 0 0 0 0 �1 �1=3 4500 b
t 1/2 1/3 0 0 0 0 0 0 +2=3 173000 t
e� 1/2 0 1 0 0 0 0 0 �1 0.511 e+

�� 1/2 0 1 0 0 0 0 0 �1 105.658 �+

�� 1/2 0 1 0 0 0 0 0 �1 1777.1 �+

�e 1/2 0 1 0 0 0 0 0 0 0(?) �e
�� 1/2 0 1 0 0 0 0 0 0 0(?) ��
�� 1/2 0 1 0 0 0 0 0 0 0(?) ��
 1 0 0 0 0 0 0 0 0 0 

gluon 1 0 0 0 0 0 0 0 0 0 gluon
W+ 1 0 0 0 0 0 0 0 +1 80220 W�

Z 1 0 0 0 0 0 0 0 0 91187 Z
graviton 2 0 0 0 0 0 0 0 0 0 graviton

Here B is the baryon number and L the lepton number. It is found that there are three di�erent
lepton numbers, one for e, � and � , which are separately conserved. T is the isospin, with T3 the
projection of the isospin on the third axis, C the charmness, S the strangeness and B� the bottomness.
The anti particles have quantum numbers with the opposite sign except for the total isospin T. The
composition of (anti)quarks of the hadrons is given in the following table, together with their mass
in MeV in their ground state:

�0 1
2

p
2(uu+dd) 134.9764 J/	 cc 3096.8 �+ d d s 1197.436

�+ ud 139.56995 � bb 9460.37 �0 u s s 1314.9

�� du 139.56995 p+ u u d 938.27231 �
0

u s s 1314.9
K0 sd 497.672 p� u u d 938.27231 �� d s s 1321.32
K0 ds 497.672 n0 u d d 939.56563 �+ d s s 1321.32
K+ us 493.677 n0 u d d 939.56563 
� s s s 1672.45
K� su 493.677 � u d s 1115.684 
+ s s s 1672.45
D+ cd 1869.4 � u d s 1115.684 �+c u d c 2285.1
D� dc 1869.4 �+ u u s 1189.37 �2� u u u 1232.0
D0 cu 1864.6 �� u u s 1189.37 �2+ u u u 1232.0
D0 uc 1864.6 �0 u d s 1192.55 �+ u u d 1232.0
F+ cs 1969.0 �0 u d s 1192.55 �0 u d d 1232.0
F� sc 1969.0 �� d d s 1197.436 �� d d d 1232.0

Each quark can exist in two spin states. So mesons are bosons with spin 0 or 1 in their ground
state, while baryons are fermions with spin 1

2 or
3
2 . There exist excited states with higher internal L.

Neutrino's have a helicity of �1
2 while antineutrino's have only +1

2 as possible value.

The quantum numbers are subject to conservation laws. These can be derived from symmetries in the
Lagrange density: continuous symmetries give rise to additive conservation laws, discrete symmetries
result in multiplicative conservation laws.



92 Physics Formulary by ir. J.C.A. Wevers

Geometrical conservation laws are invariant under Lorentz transformations and the CPT-operation.
These are:

1. Mass/energy because the laws of nature are invariant for translations in time.

2. Momentum because the laws of nature are invariant for translations in space.

3. Angular momentum because the laws of nature are invariant for rotations.

Dynamical conservation laws are invariant under the CPT-operation. These are:

1. Electrical charge because the Maxwell equations are invariant under gauge transformations.

2. Colour charge is conserved.

3. Isospin because QCD is invariant for rotations in T-space.

4. Baryon number and lepton number are conserved but not under a possible SU(5) symmetry of
the laws of nature.

5. Quarks type is only conserved under the colour interaction.

6. Parity is conserved except for weak interactions.

The elementary particles can be classi�ed into three families:

leptons quarks antileptons antiquarks

1st generation e� d e+ d
�e u �e u

2nd generation �� s �+ s
�� c �� c

3rd generation �� b �+ b
�� t �� t

Quarks exist in three colours but because they are con�ned these colours cannot be seen directly. The
color force does not decrease with distance. The potential energy will become high enough to create
a quark-antiquark pair when it is tried to disjoin an (anti)quark from a hadron. This will result in
two hadrons and not in free quarks.

15.12 P and CP-violation

It is found that the weak interaction violates P-symmetry, and even CP-symmetry is not conserved.
Some processes which violate P symmetry but conserve the combination CP are:

1. �-decay: �� ! e� + �� + �e. Left-handed electrons appear more than 1000� as much as
right-handed ones.

2. �-decay of spin-polarized 60Co: 60Co!60 Ni + e� + �e. More electrons with a spin parallel to
the Co than with a spin antiparallel are created: (parallel�antiparallel)/(total)=20%.

3. There is no connection with the neutrino: the decay of the � particle through: � ! p+ + ��

and �! n0 + �0 has also these properties.

The CP-symmetry was found to be violated by the decay of neutral Kaons. These are the lowest
possible states with a s-quark so they can decay only weakly. The following holds: CjK0i = �jK0i
where � is a phase factor. Further holds PjK0i = �jK0i because K0 and K0 have an intrinsic parity
of �1. From this follows that K0 and K0 are not eigenvalues of CP: CPjK0i = jK0i. The linear
combinations

jK0
1i := 1

2

p
2(jK0i+ jK0i) and jK0

2i := 1
2

p
2(jK0i � jK0i)
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are eigenstates of CP: CPjK0
1i = +jK0

1i and CPjK0
2i = �jK0

2i. A base of K0
1 and K

0
2 is practical while

describing weak interactions. For colour interactions a base of K0 and K0 is practical because then
the number u�number u is constant. The expansion postulate must be used for weak decays:

jK0i = 1
2(hK0

1jK0i+ hK0
2jK0i)

The probability to �nd a �nal state with CP= �1 is 1
2 j


K0
2jK0

� j2, the probability of CP=+1 decay
is 1

2 j


K0
1jK0

� j2.
The relation between the mass eigenvalues of the quarks (unaccented) and the �elds arising in the
weak currents (accented) is (u0; c0; t0) = (u; c; t), and:0

@ d0

s0

b0

1
A =

0
@ 1 0 0

0 cos �2 sin �2
0 � sin �2 cos �2

1
A
0
@ 1 0 0

0 1 0
0 0 ei�

1
A
0
@ cos �1 sin �1 0
� sin �1 cos �1 0

0 0 1

1
A

0
@ 1 0 0

0 cos �3 sin �3
0 � sin �3 cos �3

1
A
0
@ d

s
b

1
A

�1 � �C is the Cabibbo angle: sin(�C) � 0:23� 0:01.

15.13 The standard model

When one wants to make the Lagrange density which describes a �eld invariant for local gauge
transformations from a certain group, one has to perform the transformation

@

@x�
! D

Dx�
=

@

@x�
� i g

�h
LkA

k
�

Here the Lk are the generators of the gauge group (the \charges") and the Ak� are the gauge �elds.
g is the matching coupling constant. The Lagrange density for a scalar �eld becomes:

L = �1
2(D��

�D��+M2���)� 1
4F

a
��F

��
a

and the �eld tensors are given by: F a
�� = @�Aa� � @�Aa� + gcalmA

l
�A

m
� .

15.13.1 The electroweak theory

The electroweak interaction arises from the necessity to keep the Lagrange density invariant for local
gauge transformations of the group SU(2)
U(1). Right- and left-handed spin states are treated
di�erent because the weak interaction does not conserve parity. If a �fth Dirac matrix is de�ned by:

5 := 1234 = �

0
BB@

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1
CCA

the left- and right- handed solutions of the Dirac equation for neutrino's are given by:

 L = 1
2(1 + 5) and  R = 1

2(1 � 5) 
It appears that neutrino's are always left-handed while antineutrino's are always right-handed. The
hypercharge Y , for quarks given by Y = B + S + C + B� +T0, is de�ned by:

Q = 1
2Y + T3

so [Y; Tk] = 0. The group U(1)Y
SU(2)T is taken as symmetry group for the electroweak interaction
because the generators of this group commute. The multiplets are classi�ed as follows:
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e�R �eL e�L uL d0L uR dR

T 0 1
2

1
2 0 0

T3 0 1
2 � 1

2
1
2 � 1

2 0 0

Y �2 �1 1
3

4
3 �2

3

Now, 1 �eld B�(x) is connected with gauge group U(1) and 3 gauge �elds ~A�(x) are connected with
SU(2). The total Lagrange density (minus the �eldterms) for the electron-fermion �eld now becomes:

L0;EZ = �( �e;L;  eL)�
�
@� � i g�h

~A� � (12~�) � 1
2 i
g0

�h
B� � (�1)

��
 �e;L
 eL

�
�

 eR
�

�
@� � 1

2 i
g0

�h
(�2)B�

�
 eR

Here, 1
2~� are the generators of T and �1 and �2 the generators of Y .

15.13.2 Spontaneous symmetry breaking: the Higgs mechanism

All leptons are massless in the equations above. Their mass is probably generated by spontaneous sym-
metry breaking. This means that the dynamic equations which describe the system have a symmetry
which the ground state does not have. It is assumed that there exists an isospin-doublet of scalar �elds
� with electrical charges +1 and 0 and potential V (�) = ��2���+�(���)2. Their antiparticles have
charges �1 and 0. The extra terms in L arising from these �elds, LH = (DL��)�(D

�
L�)� V (�), are

globally U(1)
SU(2) symmetric. Hence the state with the lowest energy corresponds with the state
��(x)�(x) = v = �2=2� =constant. The �eld can be written (were !� and z are Nambu-Goldstone
bosons which can be transformed away, and m� = �

p
2) as:

� =

�
�+

�0

�
=

�
i!+

(v + �� iz)=p2
�

and h0j�j0i =
�

0
v=
p
2

�

Because this expectation value 6= 0 the SU(2) symmetry is broken but the U(1) symmetry is not.
When the gauge �elds in the resulting Lagrange density are separated one obtains:

W�
� = 1

2

p
2(A1

� + iA2
�) ; W+

� = 1
2

p
2(A1

� � iA2
�)

Z� =
gA3

� � g0B�p
g2 + g02

� A3
� cos(�W)� B� sin(�W)

A� =
g0A3

� + gB�p
g2 + g02

� A3
� sin(�W) + B� cos(�W)

where �W is called the Weinberg angle. For this angle holds: sin2(�W) = 0:255� 0:010. Relations
for the masses of the �eld quanta can be obtained from the remaining terms: MW = 1

2vg and

MZ = 1
2v
p
g2 + g02, and for the elementary charge holds: e =

gg0p
g2 + g02

= g0 cos(�W) = g sin(�W)

Experimentally it is found that MW = 80:022 � 0:26 GeV/c2 and MZ = 91:187 � 0:007 GeV/c2.
According to the weak theory this should be: MW = 83:0 � 0:24 GeV/c2 and MZ = 93:8 � 2:0
GeV/c2.

15.13.3 Quantumchromodynamics

Coloured particles interact because the Lagrange density is invariant for the transformations of the
group SU(3) of the colour interaction. A distinction can be made between two types of particles:

1. \White" particles: they have no colour charge, the generator ~T = 0.
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2. \Coloured" particles: the generators ~T are 8 3�3 matrices. There exist three colours and three
anticolours.

The Lagrange density for coloured particles is given by

LQCD = i
X
k

	k
�D�	k +

X
k;l

	kMkl	l � 1
4F

a
��F

��
a

The gluons remainmassless because this Lagrange density does not contain spinless particles. Because
left- and right- handed quarks now belong to the same multiplet a mass term can be introduced. This
term can be brought in the formMkl = mk�kl.

15.14 Path integrals

The development in time of a quantum mechanical system can, besides with Schr�odingers equation,
also be described by a path integral (Feynman):

 (x0; t0) =

Z
F (x0; t0; x; t) (x; t)dx

in which F (x0; t0; x; t) is the amplitude of probability to �nd a system on time t0 in x0 if it was in x
on time t. Then,

F (x0; t0; x; t) =

Z
exp

�
iS[x]

�h

�
d[x]

where S[x] is an action-integral: S[x] =
R
L(x; _x; t)dt. The notation d[x] means that the integral has

to be taken over all possible paths [x]:

Z
d[x] := lim

n!1

1

N

Y
n

8<
:

1Z
�1

dx(tn)

9=
;

in which N is a normalization constant. To each path is assigned a probability amplitude exp(iS=�h).
The classical limit can be found by taking �S = 0: the average of the exponent vanishes, except where
it is stationary. In quantum �eldtheory, the probability of the transition of a �eldoperator �(~x;�1)
to �0(~x;1) is given by

F (�0(~x;1);�(~x;�1)) =

Z
exp

�
iS[�]

�h

�
d[�]

with the action-integral

S[�] =

Z



L(�; @��)d4x

15.15 Uni�cation and quantum gravity

The strength of the forces varies with energy and the reciprocal coupling constants approach each other
with increasing energy. The SU(5) model predicts complete uni�cation of the electromagnetical, weak
and colour forces at 1015GeV. It also predicts 12 extra X bosons which couple leptons and quarks and
are i.g. responsible for proton decay, with dominant channel p+ ! �0 + e+, with an average lifetime
of the proton of 1031 year. This model has been experimentally falsi�ed.

Supersymmetric models assume a symmetry between bosons and fermions and predict partners for
the currently known particles with a spin which di�ers 1

2 . The supersymmetric SU(5) model predicts
uni�cation at 1016GeV and an average lifetime of the proton of 1033 year. The dominant decay
channels in this theory are p+ ! K+ + �� and p+ ! K0 + �+.

Quantum gravity plays only a role in particle interactions at the Planck dimensions, where �C � RS:
mPl =

p
hc=G = 3 � 1019 GeV, tPl = h=mPlc2 =

p
hG=c5 = 10�43 sec and rPl = ctPl � 10�35 m.
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Astrophysics

16.1 Determination of distances

To determine distances in the near space, the parallax is mostly used. The parallax is the angular
di�erence between two measurements of the position of the object from di�erent view-points. If the
annual parallax is given by p, the distance R of the object is given by R = a= sin(p), in which a is the
radius of the Earth's orbit. The clusterparallax is used to determine the distance of a group of stars
by using their motion w.r.t. a �xed background. The tangential velocity vt and the radial velocity vr
of the stars along the sky are given by

vr = V cos(�) ; vt = V sin(�) = !R

where � is the angle between the star and the point of convergence and
R̂ the distance in pc. This results, with vt = vr tan(�), in:

R =
vr tan(�)

!
) R̂ =

100

p

where p is the parallax in arc seconds. The parallax is then given by

p =
4:74�

vr tan(�)

RR-Lyrae

Type 2

Type 1

0,1 0,3 1 3 10 30 100
1

0

-1

-2

-3

-4

-5

P (days) !

hM i

with � de proper motion of the star in 00/yr. A method to determine the distance of objects which
are somewhat further away, like galaxies and star clusters, uses the period-Brightness relation for
Cepheids. This relation is shown in the above �gure for di�erent types of stars.

16.2 Brightness and magnitudes

The brightness is the total radiated energy per unit of time. Earth receives s0 = 1:374 kW/m2 from
the Sun. Hence, the brightness of the Sun is given by L� = 4�r2s0 = 3:82 � 1026 W. It is also given
by:

L� = 4�R2
�

1Z
0

�F�d�

where �F� is the monochromatic radiation ux. At the position of an observer this is �f� , with
f� = (R=r)2F� if absorption is ignored. If A� is the fraction of the ux which reaches Earth's surface,
the transmission factor is given by R� and the surface of the detector is given by �a2, then the
apparent brightness b is given by:

b = �a2
1Z
0

f�A�R�d�

The magnitude m is de�ned by:

b1
b2

= (100)
1
5
(m2�m1) = (2:512)m2�m1

96
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because the human eye perceives lightintensities logaritmical. From this follows that m2 � m1 =
2:5 �10 log(b1=b2), or: m = �2:5 �10 log(b) +C. The apparent brightness of a star if this star would be
at a distance of 10 pc is called the absolute brightness B: B=b = (r̂=10)2. The absolute magnitude is
then given by M = �2:5 �10 log(B)+C, or: M = 5+m�5 �10 log(r̂). When an interstellar absorption
of 10�4/pc is taken into account one �nds:

M = (m � 4 � 10�4r̂) + 5� 5 �10 log(r̂)
If a detector detects all radiation emitted by a source one would measure the absolute bolometric

magnitude. If the bolometric correction BC is given by

BC = 2:5 �10 log
�
Energy ux received

Energy ux detected

�
= 2:5 �10 log

� R
f�d�R

f�A�R�d�

�
holds: Mb =MV �BC where MV is the visual magnitude. Further holds

Mb = �2:5 �10 log
�
L

L�

�
+ 4:72

16.3 Radiation and stellar atmospheres

The radiation energy passing through a surface dA is dE = I�(�; ') cos(�)d�d
dAdt, where I� is
the monochromatical intensity [Wm�2sr�1Hz�1]. When there is no absorption the quantity I� is
independent of the distance to the source. Planck's law holds for a black body:

I�(T ) � B�(T ) = c

4�
w�(T ) =

2h�3

c2
1

exp(h�=kT )� 1

The radiation transport through a layer can then be written as:

dI�
ds

= �I��� + j�

Here, j� is the coe�cient of emission and �� the coe�cient of absorption.
R
ds is the thickness of

the layer. The optical thickness �� of the layer is given by �� =
R
��ds. The layer is optically thin if

�� � 1, the layer is optically thick if �� � 1. For a stellar atmosphere in LTE holds: j� = ��B�(T ).
Then also holds:

I�(s) = I�(0)e
��� +B� (T )(1� e��� )

16.4 Composition and evolution of stars

The structure of a star is described by the following equations:

dM (r)

dr
= 4�%(r)r2

dp(r)

dr
= �GM (r)%(r)

r2

L(r)

dr
= 4�%(r)"(r)r2�

dT (r)

dr

�
stral

= �3
4

L(r)

4�r2
�(r)

4�T 3(r)
; (Eddington), or�

dT (r)

dr

�
conv

=
T (r)

p(r)

 � 1



dp(r)

dr
; (convective energy transport)

Further, for stars of the solar type, the composing plasma can be described as an ideal gas:

p(r) =
%(r)kT (r)

�mH
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where � is the average molecular mass, usually well approximated by:

� =
%

nmH
=

1

2X + 3
4Y + 1

2Z

where X is the mass fraction of H, Y the mass fraction of He and Z the mass fraction of the other
elements. Further holds:

�(r) = f(%(r); T (r); composition) and "(r) = g(%(r); T (r); composition)

Convection will occur when the star meets the Schwartzschild criterium:�
dT

dr

�
conv

<

�
dT

dr

�
stral

Otherwise the energy transfer takes place by radiation. For stars in quasi-hydrostatic equilibrium
hold the approximations r = 1

2R, M (r) = 1
2M , dM=dr = M=R, � � % and " � %T � (this last

assumption is only valid for stars on the main sequence). For pp-chains holds � � 5 and for the CNO
chains holds � = 12 tot 18. It can be derived that L � M3: the mass-brightness relation. Further
holds: L � R4 � T 8e� . This results in the equation for the main sequence in the Hertzsprung-Russel
diagram:

10 log(L) = 8 �10 log(Te�) + constant

16.5 Energy production in stars

The net reaction from which most stars gain their energy is: 41H! 4He + 2e+ + 2�e + .
This reaction produces 26.72 MeV. Two reaction chains are responsible for this reaction. The slowest,
speed-limiting reaction is shown in boldface. The energy between brackets is the energy carried away
by the neutrino.

1. The proton-proton chain can be divided into two subchains:
1H + p+ ! 2D + e+ + �e, and then 2D+ p! 3He + .

I. pp1: 3He +3 He! 2p+ + 4He. There is 26.21 + (0.51) MeV released.

II. pp2: 3He + �! 7Be + 

i. 7Be + e� ! 7Li + �, then 7Li + p+ ! 24He + . 25.92 + (0.80) MeV.

ii. 7Be + p+ ! 8B + , then 8B+ e+ ! 24He + �. 19.5 + (7.2) MeV.

Both 7Be chains become more important with raising T .

2. The CNO cycle. The �rst chain releases 25.03 + (1.69) MeV, the second 24.74 + (1.98) MeV.
The reactions are shown below.

�! &
% ! 15N+ p+ ! �+12 C 15N+ p+ ! 16O+ 

# #
15O+ e+ ! 15N + � 12C+ p+ ! 13N +  16O+ p+ ! 17F + 

" # #
14N + p+ ! 15O +  13N! 13C+ e+ + � 17F! 17O+ e+ + �

# #
-  13C+ p+ ! 14N +  17O+ p+ ! �+ 14N

 � .
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The r-operator

In cartesian coordinates (x; y; z) holds:

~r =
@

@x
~ex +

@

@y
~ey +

@

@z
~ez ; gradf = ~rf = @f

@x
~ex +

@f

@y
~ey +

@f

@z
~ez

div ~a = ~r � ~a = @ax
@x

+
@ay
@y

+
@az
@z

; r2f =
@2f

@x2
+
@2f

@y2
+
@2f

@z2

rot ~a = ~r� ~a =
�
@az
@y
� @ay

@z

�
~ex +

�
@ax
@z
� @az

@x

�
~ey +

�
@ay
@x
� @ax

@y

�
~ez

In cylinder coordinates (r; '; z) holds:

~r =
@

@r
~er +

1

r

@

@'
~e' +

@

@z
~ez ; gradf =

@f

@r
~er +

1

r

@f

@'
~e' +

@f

@z
~ez

div ~a =
@ar
@r

+
ar
r
+
1

r

@a'
@'

+
@az
@z

; r2f =
@2f

@r2
+
1

r

@f

@r
+

1

r2
@2f

@'2
+
@2f

@z2

rot ~a =

�
1

r

@az
@'
� @a'

@z

�
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�
@ar
@z
� @az

@r

�
~e' +

�
@a'
@r

+
a'
r
� 1

r

@ar
@'

�
~ez

In spherical coordinates (r; �; ') holds:

~r =
@

@r
~er +

1

r

@

@�
~e� +

1

r sin �

@

@'
~e'

gradf =
@f

@r
~er +

1

r

@f

@�
~e� +

1

r sin �

@f

@'
~e'

div ~a =
@ar
@r

+
2ar
r

+
1

r

@a�
@�

+
a�

r tan �
+

1

r sin �

@a'
@'

rot ~a =

�
1

r

@a'
@�

+
a�

r tan �
� 1

r sin �

@a�
@'

�
~er +

�
1

r sin �

@ar
@'
� @a'

@r
� a'

r

�
~e� +�

@a�
@r

+
a�
r
� 1

r

@ar
@�

�
~e'

r2f =
@2f

@r2
+
2

r

@f

@r
+

1

r2
@2f

@�2
+

1

r2 tan �

@f

@�
+

1

r2 sin2 �

@2f

@'2

General orthonormal curvelinear coordinates (u; v; w) can be obtained from cartesian coordinates by
the transformation ~x = ~x(u; v; w). The unit vectors are then given by:

~eu =
1

h1

@~x

@u
; ~ev =

1

h2

@~x

@v
; ~ew =

1

h3

@~x

@w

where the factors hi set the norm to 1. Then holds:

gradf =
1

h1

@f

@u
~eu +

1

h2

@f

@v
~ev +

1

h3

@f
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