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1 Celestial and terrestrial reference

frames

Every twenty-four hours, the Earth rotates around its axis relative to the heavens at
what is very nearly a constant rate, about what it very nearly a �xed axis. The direction
of this rotation axis will serve as the z axis of both the celestial and the terrestrial frame.
In order to completely de�ne the orientation of our reference frame, we then need to
conventionally �x two longitudes:

1. On the celestial sphere: we take for this the vernal equinox, where the Sun crosses
the equator S-N

2. On the Earth: the International Meridian Conference in Washington DC, 1884,
chose Greenwich as the prime meridian.

A bonus of this choice, which was realized after the conference, was that at the same
time was de�ned a single, uni�ed global time system, comprising 15◦ broad hourly
time zones, so � especially in the United States, which was expanding Westward
over many time zones � the trains would run on time.

See �gure 1.1.

Red denotes an ECEF (Earth-Centred, Earth-Fixed) reference frame, which co-rotates
with the solid Earth, so the x axis always lies in the plane of the Greenwich merid-
ian. This is also called a CT (Conventional Terrestrial) System. Locations on the
Earth's surface are (almost) constant in this kind of frame, and can be published,
e.g., on maps. However, moving vehicles, ocean water and atmospheric air masses
will sense �pseudo-forces� (like the Coriolis force) due to the non-uniform motion
of this reference frame

blue denotes a (quasi-)inertial system, which does not undergo any (rapid) rotations
relative to the �xed stars. Also called a celestial reference frame, as the co-ordinates
of the �xed stars are nearly constant in it and may be published. Also the equations
of motion of, e.g., satellites or gyroscopes apply strictly, without pseudo-forces
induced by non-uniform reference system motion.

A Conventional Terrestrial System (CTS) is de�ned as follows:

• the origin of the frame coincides with the centre of mass of the Earth
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1 Celestial and terrestrial reference frames
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Figure 1.1: Geocentric reference frames

• the Z axis is directed along the rotation axis of the Earth, more precisely the
Conventional International Origin (CIO) , i.e., the average direction of the axis
over the time span 1900-1905

• the XZ-plane is parallel to the zero meridian as de�ned by �Greenwich�, more
precisely by: earlier the BIH (Bureau International de l'Heure, International Time
Bureau), today the IERS (International Earth Rotation and Reference Systems
Service), based on their precise monitoring of the Earth rotation.

In �gure 1.2 we see the Earth orbit or ecliptic, the Earth axis tilt relative to the ecliptic
plane, and how this tilt causes the most impressive climating variation observable to
human beings: the four seasons.

The orientation of the Earth's axis undergoes slow changes. Relative to the stars, i.e.,
in inertial space, this motion consists of precession and nutation. It is caused by the
gravitational torque exerted by the Sun and the Moon, which are either in (Sun) or close
to (Moon) the ecliptic plane. See �gure 1.3.

If we study the motion of the Earth's axis, and Earth rotation in general, relative to a
reference frame connected to the solid Earth itself, we �nd di�erent quantitities:
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1 Celestial and terrestrial reference frames
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Figure 1.2: Geometry of the Earth's orbit and rotation axis. The seasons indicated are
boreal

• Polar motion: this consists of an annual (forced) component and a 14-months
component called the Chandler wobble.

• Length of Day.

Together these are called Earth Orientation Parameters (EOP). They are nowadays
monitored routinely, and available after the fact from the International Earth Rotation
Service over the Internet. The variation of these parameters is geophysically well under-
stood, e.g., for the Chandler wobble it is mainly the pressure of the Earth's oceans and
atmosphere that is responsible ([Gro00]).
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1 Celestial and terrestrial reference frames

α Umi

Ecliptic plane

Moon

Sun

24 hr

α Cyg (Deneb)

α Lyr (Vega)

Lyra

Ursa
Minor α Umi

(Polaris)
Dragon

Nutation (18 yr)

Precession (26 000 yr)

Pole
Ecliptic
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1.1 Polar motion

The direction of the Earth's rotation axis is slightly varying over time. This polar motion
has two components called xP and yP , the o�set of the instantaneous pole from the
CIO pole in the direction of Greenwich, and perpendicular to it in the West direction,
respectively. The transformation between the instantaneous and conventional terrestrial
references is done as follows:

xIT = RY (xp)RX (yp) xCT .

Here, note that the matrix RY denotes a rotation by an amount xP about the Y axis, i.e.,
the Y axis stays �xed, while the X and Z co-ordinates change. Similarly, the matrix RX
denotes a rotation yp about the X axis, which changes only the Y and Z co-ordinates.
The matrices are

RY (xp) =

 cosxP 0 − sinxP
0 1 0

sinxP 0 cosxP

 and RX (yp)

 1 0 0
0 cos yP sin yP
0 − sin yP cos yP

 .
Because the angles xp and yp are very small, order of magnitude second of arc, we may
approximate sinxp ≈ xp and cosxp ≈ 1 (same for yp), as well as xP yP ≈ 0, obtaining

RY (xp)RX (yp) ≈

 1 0 −xp
0 1 0
xp 0 1


 1 0 0

0 1 yp
0 −yp 1

 =

 1 0 −xp
0 1 yp
xp −yp 1

 .
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1 Celestial and terrestrial reference frames
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1 Celestial and terrestrial reference frames
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Figure 1.6: Local astronomical co-ordinates

1.2 Topocentric co-ordinates

These also called local astronomical co-ordinates. The z-axis points upward along local
plumbline (vertical); the xy-plane lies in the local horizon.

The X-axis points due North. A variant of this are instrumental co-ordinates, where (for
general theodolites) the X-axis points in an arbitrary direction de�ned by the horizontal
circle's orientation.

If we have the observation of a celestial object in the form of azimut A and elevation ζ,
we can obtain rectangular local astronomical co-ordinates as follows: x

y
z


LA

=

 cosA cos ζ
sinA cos ζ

sin ζ

 .
The reverse transformation is done as follows (note that the rectangular vector is a unit
vector, also called a direction vector or �direction cosines�):

ζ = arcsin z,

A = 2 arctan
y

x+
√
x2 + y2

.
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1 Celestial and terrestrial reference frames

The latter formula is known as the half-angle formula and avoids the problem of �nding
the correct quadrant for A. The result is in the interval (−180◦, 180◦] and negative values
may be incremented by 360◦ to make them positive.

The transformation between local astronomical and conventional terrestrial requires
knowledge of the local astronomical position, i.e., the direction of the local plumbline
which de�nes the vertical of the LA system: Λ, the local astronomical longitude, and Φ,
the local astronomical latitude. Then: X

Y
Z


CT

=

 − sin Φ cos Λ − sin Λ cos Φ cos Λ
− sin Φ sin Λ cos Λ cos Φ sin Λ

cos Φ 0 sin Φ


 x
y
z


LA

,

or in symbolic form
xCT = RxLA,

where

R = RZ (180◦ − Λ)RY (90◦ − Φ)MY =

=

 − cos Λ sin Λ 0
− sin Λ − cos Λ 0

0 0 1


 sin Φ 0 − cos Φ

0 1 0
cos Φ 0 sin Φ


 1 0 0

0 −1 0
0 0 1

 .
The matrix MY simply mirrors the Y axis. The correctness of the RY and RZ rotation
matrices is easiest to verify by making a two-dimensional plot on paper.

Note that this transformation formula is only approximate, due to the fact that the
conventional terrestial system is not the same as the instantaneous terrestrial reference
system (IT), in which the astronomical observations of (Φ,Λ) are being made. So, in the
above, instead of CT we actually obtain IT, and further corrections due to polar motion
and Earth rotation variations.

1.3 Sidereal time

See the pretty �gure 1.7. We have the following quantities:

• GAST = Greenwich Apparent Sidereal Time

• LMST = Local Mean Sidereal Time;

• the equinox varies irregularly with time due to precession and nutation. That's
why we distinguish Mean and Apparent. The di�erence is called the equation of

equinoxes.

• h is the hour angle

• hGr is the Greenwich hour angle

• α is the right ascension (of a celestial object)
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1 Celestial and terrestrial reference frames

 165
oW 

 1
50

o W
 

 1
3
5
o W

 

 1
2
0

o W
 

 1
0
5

o W
 

  9
0

o
W

 
  7

5
o
W

 
  6

0 o
W

 

  4
5 o

W
 

  30 o
W

 
  15o

W    0
o   15

oE 
  3

0
o E 

  
4
5
o E

 

  
6
0

o E
 

  
7
5

o E
 

  
9

0
o
E

 

 1
0
5
o
E

 

 1
2
0 o

E
 

 1
3
5 o

E
 

 150 o
E 

 165o
E 

 180
o
W 

  30
o
N 

  45
o
N 

  60
o
N 

  75
o
N 

True

Mean

LAST
GMST

GAST

LMST

Right
ascension

α

Earth
rotation

Greenwich

λ

h

hGr

vernal
equinox

Figure 1.7: Sidereal time

• λ is the longitude (of a terrestrial object).

h = LAST − α,
hGr = GAST − α,

LAST = GAST + λ,

LMST = GMST + λ.

More detailed discussions in [Tor01] Section 2.4.

11



1 Celestial and terrestrial reference frames

1.4 Quasi-inertial geocentric system

The quasi-inertial, also celestial, or real astronomical (RA) reference frame, drawn in
blue in �gure 1.1, is a geocentric system, like the conventional terrestrial system. It is
however celestial in nature and the positions of stars are approximately constant in it.
It is de�ned as follows:

• the origin of the frame coincides with the centre of mass of the Earth

• the Z axis is directed along the instantaneous rotation axis of the Earth, and so

• the XY plane is parallel to the instantaneous equatorial plane of the Earth

• The X axis points to the instantaneous vernal equinox point, the intersection of
celestial equator and ecliptic.

Like for the conventional terrestial reference system there was a corresponding �instan-
taneous� system connected to the instantaneous rotation axis of the Earth, there exists
a conventional celestial system too in which the places of stars on the celestial sphere
are given in stellar catalogues and on star charts. These places of stars are given in
some �precession epoch� or �equinox�, e.g., 2000.0. To obtain the apparent place of a
star, i.e., the place in the sky that it �appears� to be at the moment of observation, a
reduction computation must be executed accounting for precession and nutation, among
other things.

The spherical co-ordinates of this system are right ascension α and declination δ. Con-
sidering the celestial sphere again a �direction sphere� only, we may assume all direction
vectors to be unit vectors and obtain for rectangular RA co-ordinates: X

Y
Z


RA

=

 cosα cos δ
sinα cos δ

sin δ

 .
Note that, while declination is given in degrees ( ◦), right ascension is for traditional
convenience reasons given in time units, i.e., hours, minutes and seconds. Going from
rectangular to spherical again requires the following formulae:

δ = arcsinZ

α = 2 arctan
Y

X +
√
X2 + Y 2

.

Again, negative values for α can be made positive by adding 24 h.

We can transform between RA and IT (instantaneous terrestrial) co-ordinates as follows: X
Y
Z


RA

= RZ (−GAST)

 X
Y
Z


IT

=

 cos (GAST) − sin (GAST) 0
sin (GAST) cos (GAST) 0

0 0 1


 X
Y
Z


IT

.
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1 Celestial and terrestrial reference frames

1.5 Transformations between systems

See the following diagram, which depicts only the rotations between the various systems:

Φ,Λ xp, yp GAST
Local ⇐⇒ Conventional ⇐⇒ Instantaneous ⇐⇒ Real

Astronomical Terrestrial Terrestrial Astronomical

Here, Φ,Λ are local astronomical co-ordinates (direction of the plumbline), while xp, yp
are the co-ordinates of the pole in the CIO system. GAST is Greenwich Apparent Sidereal
Time.

1.6 Compound co-ordinate �systems�

We may represent horizontal location in two dimensions by either (ϕ, λ) or (x, y). Simi-
larly we may represent height in one dimension by, e.g., orthometric height H.

• In two dimensions we use rectangular map projection co-ordinates (x, y), which
have a 1-to-1 correspondence with ellipsoidal latitude and longitude (ϕ, λ), typically
computed on a suitably chosen reference ellipsoid.

• In one dimension, we have the height system. See below.

Then we have compound systems, like (ϕ, λ,H) or (x, y,H). These are often used, but
one should remember that they are arti�cial, being �synthetic�. Always remember that

• (x, y) and (ϕ, λ) are connected by a map projection

• H is connected to three-dimensional location (or ellipsoidal height h) by a geoid

model.
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2 The reference ellipsoid

2.1 Geodetic co-ordinates

Geodetic co-ordinates are always given relative to a chosen reference ellipsoid. Besides
choosing the parameters of this ellipsoid, one has to choose the location of its centre �
generally not geocentric, or not precisely so � and the orientation of its axes � generally,
the Z-axis will not be parallel, or not precisly so, with the Earth's rotation axis.

The refence ellipsoids used in geodesy are bi-axial ellipsoids, with the shorter axis pointing
approximately along the Earth's rotation axis. The two, equal, longer axes then point
approximately within the equatorial plane.

More rarely, tri-axial reference ellipsoids have been proposed, but not found practical.
For other celestial bodies � the Moon, Mars � this may be di�erent.

We can de�ne rectangular geodetic coordinates
[
XG YG ZG

]T
as having their origin

at the centre of the reference ellipsoid chosen � not necessarily, or not precisely, the
geocentre or centre of mass of the Earth, though close to it � and having the ZG-axis
aiming along the shorter axis of the ellipsoid. The direction of the XG-axis is arbitrary
in principle, but is chosen in practice to be close to the Greenwich meridian plane. The
XGYG plane is the equatorial plane of the ellipsoid.

A geodetic co-ordinate system is meant to be as close to geocentric (the CT system) as
possible, but using measurements on �nite precision this is not possible exactly. The non-

geocentricity of the origin may be called
[

∆X ∆Y ∆Z
]T
, and the non-alignedness of

the axes, εx, εy, εz. With these six parameters known, one can derive the transformation
formula between the two systems, allong one to calculate co-ordinate di�erences between
them. These six parameters together de�ne a geodetic datum.

2.2 Ellipsoids and Geocentricity

Old reference systems were created using traditional measurement technology tied to the
Earth's surface and the local plumbline. The reference ellipsoid was only a computational
device, with no claim of global representativeness or geocentricity.

• North direction was �xed with the aid of Laplace azimuths

14



2 The reference ellipsoid

• Origin was �xed in two dimensions by choice of �datum point�, e.g., Potsdam,
where the astronomical latitude and longitude equalled the (conventionally �xed)
geodetic ones.

• Vertical level was �xed by setting �geoid undulation� to zero in datum point

• Thus, the network location and orientation in space was �xed ⇒not geocentric

• Non-geocentricity related to (physical) plumbline de�ections in datum point: every
second of arc produces geocentrically

∆R = 2πR
1′′

360◦
≈ 4.8 · 10−6R ≈ 31 m.

See �gure:

Φ,Λ
ϕ, λ

Ellipsoidal normal

Plumbline

Geodetic measurement network

Datum point

Reference ellipsoid

geodetic co-ordinates Geoid (mean sea level)

Φ,Λ

ϕ, λ

Plumbline de�ection

Astronomical co-ordinates

European Datum 1950 (ED50)
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2 The reference ellipsoid
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2.3 Local geodetic co-ordinates

For this system, LG, the origin is in the location of observation, the z-axis points along
the outward ellipsoidal normal (which di�ers from the local vertical!), the x-axis points to
the geodetic North � i.e., the direction on the ellipsoidal surface that intersects with the
ellipsoid's shorter axis ZG � and the y-axis completes a left-handed system, i.e., points
ellipsoidally due East.

The orientation of this system relative to the rectangular geodetic co-ordinates de�ned
above, by two angles: ϕ and λ, the geodetic latitude and longitude. These di�er from the
astronomical latitude and longitude Φ and Λ forming the basis of the local astronomical
(LA) system, by amounts called the de�ection of the vertical. Otherwise, these two
systems are similar.

2.4 Conversion of geodetic latitude and longitude to
rectangular co-ordinates

We will often extend the two ellipsoidal or geodetic co-ordinates on the reference ellipsoid,
geodetic latitude ϕ and geodetic longitude λ, with a third co-ordinate, the height h above
the reference ellipsoid's surface. This is usually called �ellipsoidal height�, not the perhaps
more logical �geodetic height�. As these three co-ordinates (h, ϕ, λ) completely specify the
location of a point, a unique conversion to rectangular (X,Y, Z) co-ordinates is possible:
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2 The reference ellipsoid

 X
Y
Z

 =

 (N (ϕ) + h) cosϕ cosλ
(N (ϕ) + h) cosϕ sinλ
((b2/a2)N (ϕ) + h) sinϕ

 .
Here, a and b are the ellipsoid's semi-major and minor axes (equatorial and polar radius)
and N , or N (ϕ), the normal or transversal (E-W direction) radius of curvature

N (ϕ) =
a2√

a2 cos2 ϕ+ b2 sin2 ϕ
.

2.5 Datum transformations

We derive approximate datum transformation formulas in spherical approximation. This
is acceptable for datum transformations which are �small�, i.e., they cause small changes
in the co-ordinates between the two datums.

Geocentrically (φ is geocentric latitude): X
Y
Z

 = (R+ h)

 cosφ cosλ
cosφ sinλ

sinφ

+

 X0

Y0

Z0

 .

Write this for two di�erent systems (assuming same axes orientation): X(1)

Y (1)

Z(1)

 =
(
R+ h(1)

) cosφ(1) cosλ(1)

cosφ(1) sinλ(1)

sinφ(1)

+

 X
(1)
0

Y
(1)

0

Z
(1)
0

 ,
 X(2)

Y (2)

Z(2)

 =
(
R+ h(2)

) cosφ(2) cosλ(2)

cosφ(2) sinλ(2)

sinφ(2)

+

 X
(2)
0

Y
(2)

0

Z
(2)
0

 .

Demand the left hand sides to be the same:

 ∆X
∆Y
∆Z

 =


(
R+ h(2)

) cosφ(2) cosλ(2)

cosφ(2) sinλ(2)

sinφ(2)


−

17



2 The reference ellipsoid

.

.

.

Geoid

Ellipsoid 1

Plumbline

Datum
transformation

Φ,Λ

Ellipsoidal normal

21
H

h1

ϕ2, λ2ϕ1, λ1

h2

N1

N2

ξ1

ξ2

Ellipsoid 2

Figure 2.1: A datum transformation as a change of reference ellipsoid

−


(
R+ h(1)

) cosφ(1) cosλ(1)

cosφ(1) sinλ(1)

sinφ(1)


+

 ∆X0

∆Y0

∆Z0

 =

= ∆

(R+ h)

 cosφ cosλ
cosφ sinλ

sinφ


+

 ∆X0

∆Y0

∆Z0

 = 0.

Taking partial derivatives (linearization) yields:

 ∆X0

∆Y0

∆Z0

 =

 − cosφ cosλ +R sinφ cosλ +R cosφ sinλ
− cosφ sinλ +R sinφ sinλ −R cosφ cosλ
− sinφ −R cosφ 0


 ∆h

∆ϕ
∆λ

 =

=

 − cosφ cosλ +R sinφ cosλ +R cosφ sinλ
− cosφ sinλ +R sinφ sinλ −R cosφ cosλ
− sinφ −R cosφ 0


 ∆N
−∆ξ
− ∆η

cosφ

 .
Here we see the shifts in ellipsoidal co-ordinates h, ϕ, λ (still in spherical approxima-
tion) and in datum quantities N, ξ, η, i.e., geoid undulation and the two components of
de�ection of the vertical.
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2 The reference ellipsoid

2.6 Connection between geodetic and astronomical
co-ordinates

We describe the connection between the local astronomical (LA) and local geodetic (LG)
systems. These equation hearken back to the old marquis Pierre Simon de Laplace

ξ = Φ− ϕ,
η = (Λ− λ) cosϕ,

∆A = A− a = (Λ− λ) sinϕ,

where ξ and η are the de�ections of the vertical in the direction of the meridian (North-
South) and the transversal direction (West-East) respectively. A and a again are the
directions of a target in the LA and LG systems projected onto their XY planes, i.e.,
the astronomical and geodetic azimuths. It is the latter so-called Laplace equation thatg
enables a local geodetic network to be absolutely oriented with the help of astronomical
observations.

See the following diagram:

∆X,∆Y,∆Z, εx, εy, εz
Conventional Terrestrial ⇐⇒ Geodetic

Φ,Λ m m ϕ, λ
Local Astronomical ⇐⇒ Local Geodetic

∆A, ξ, η
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3 Reference systems and realizations

3.1 Old and new reference systems; ED50 vastaan
WGS84/GRS80

In Finland like in many European countries, the traditional reference system is non-
geocentric and based on an old reference ellipsoid, the International Ellipsoid computed
by John Fillmore Hayford, and adopted by the International Union of Geodesy and
Geophysics (IUGG) in 1924. European Datum 1950 (ED50) was created in 1950 by
unifying the geodetic networks of the countries of Western Europe, and was computed
on the Hayford ellipsoid.

The newer systems, both World Geodetic System (WGS84) and Geodetic Reference
System 1980 (GRS80) are designed to be geocentric.

So, the di�erences can be summarized as:

1. Reference ellipsoid used: International Ellipsoid (Hayford) 1924 vs. GRS80

2. Realized by terrestrial measurements vs. based on satellite (and space geodetic)
data

3. Non-geocentric (100 m level) vs. geocentric (cm level).

The �gure of a reference ellipsoid is unambiguously �xed by two quantities: the semi-
major exis or equatorial radius a, and the �attening f .

• International ellipsoid 1924: a = 6378388 m, f = 1 : 297

• GRS80: a = 6378137 m, f = 1 : 298.257222101

The reference ellipsoid of GPS's WGS84 system is in principle the same as GRS80, but
due to poor numerics it ended up with

• f = 1 : 298.257223563. The net result is that the semi-minor axis (polar radius) of
WGS84 is longer by 0.1 mm1 compared to GRS80.

To complicate matters, as the basis of the ITRS family of co-ordinate systems, and their
realizations ITRF, was chosen the GRS80 reference ellipsoid.

We tabulate the de�ning and important derived quantities:
1Computation:

∆b = −∆f

f
(a − b) =

∆ (1/f)

(1/f)
(a − b) =

0.000001462

298.25722
· (21384 m) = 0.000105 m.
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3 Reference systems and realizations

Quantity Symbol Value Units
Equatorial radius a 6378137 m
Gravitational mass GM (WGS84) 3986004.418 108 km3/s2

(GRS80) 3986005.
Dynamic �attening J2 1082.63×10−6

Rotation rate ω 7.292115×10−5 s−1

Inverse �attening 1/f (WGS84) 298.257223563
(GRS80) 298.257222101

Polar radius b (WGS84) 6356752.314245 m
(GRS80) 6356752.314140

3.2 WGS84 and ITRS

Both WGS84 and the International Terrestrial Reference System (ITRS) are realized by
computing co-ordinates for polyhedra of points (stations) on the Earth's surface. The
properties of these systems are:

• Geocentric, i.e., the co-ordinate origin and centre of reference ellipsoid is the Earth's
centre of mass (and the Earth's mass includes oceans and atmosphere, but not the
Moon!). This is realized by using observations to satellites, whose equations of
motion are implicitly geocentric.

• The scale derives from the SI system. This is realized by using range measurements
by propagation of electromagnetic waves. The velocity of these waves in vacuum is
conventionally �xed to 299 792 458ms−1. Thus, range measurement becomes time
measurement by atomic clock, which is very precise.

• Orientation: originally the Conventional International Origin (CIO) of the Earth
axis, i.e., the mean orientation over the years 1900-1905, and the direction of the
Greenwich Meridian, i.e., the plumbline of the Greenwich transit circle. Currently,
as the orientation is maintained by the International Earth Rotation and Reference
Systems Service (IERS) using VLBI and GPS, this is no longer the formal de�nition;
but continuity is maintained.

• The current de�nition uses the BIH (Bureau International de l'Heure) 1984 de�ni-
tion of the conventional pole, and their 1984 de�nition of the zero meridian plane.
Together, X, Y and Z form a right-handed system.

3.3 Co-ordinate system realizations

Internationally, somewhat varying terminology is in use concerning the realization of
co-ordinate systems or datums.

• ISO: Co-ordinate reference system / co-ordinate system
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3 Reference systems and realizations

• IERS: Reference system / reference frame

• Finnish: koordinaattijärjestelmä / koordinaatisto ([Ano08])

The latter of the names is used to describe a system that was implemented in the terrain,
using actual measurements, producing co-ordinate values for the stations concerned; i.e.,
a realization. Then also, a datum was de�ned, with one or more datum points being kept
�xed at their conventional values.

The former refers to a more abstract de�nition of a co-ordinate system, involving the
choice of reference ellipsoid, origin (Earth center of mass, e.g.) and axes orientation.

3.4 Realization of WGS84

Because �WGS84� is often referred to as the system in which satellite positioning derived
co-ordinates are obtained, we shall elaborate a little on how this system has been actually
realized over time. Our source is [KR06]. The �rst version of WGS84 was released in
1987 by the US Defense Mapping Agency, currently the NGA (National Geospatial-
Intelligence Agency). After that, it was updated in 1994 (G730), 1996 (G873) and 2001
(G1150).

As you will see, there are a number of problems even with the latest realization of
WGS84. For this reason it is better to consider WGS84 as an approximation at best, of
the reference frames of the ITRF/ETRF variety. The precision of this approximation is
clearly sub-metre, so using WGS84 for metre precision level applications should be OK.
See the following note: ftp://itrf.ensg.ign.fr/pub/itrf/WGS84.TXT.

If you want more confusion, read [Ste08].

3.5 Realizations of ITRS/ETRS systems

All these systems are the responsibility of the international geodetic community, speci�-
cally the IERS (International Earth Rotation and Reference Systems Service). �I� stands
for International, �E� for European. The �S� stands for �system�, meaning the principles
for creating a reference frame before actual realization. With every ITRS corresponds
a number of ITRF's (�Frames�), which are realizations, i.e., co-ordinate solutions for
networks of ground stations computed from sets of actual measurements. Same for
ETRS/ETRF, which are the corresponding things for the European area, where the ef-
fect of the slow motion of the rigid part of the Eurasian tectonic plate has been corrected
out in order to obtain approximately constant co-ordinates.

Data used for realizing ITRF/ETRF frames: mostly GPS, but also Very long Baseline
Interferometry (VLBI) providing a strong orientation; satellite and lunar laser ranging
(SLR, LLR) contributing to the right scale, and the French DORIS satellite system.
Nowadays also GLONASS is used.
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3 Reference systems and realizations

Currently the following realizations exist for ITRS: ITRF88, 89, 90, 91, 92, 93, 94; 96,
97; ITRF2000, ITRF2005 and ITRF2008.

The de�nition of an ITRFyy is as follows [McC96]:

• The mean rotation of the Earth's crust in the reference frame will vanish globally
(cf. for ETRF: on the Eurasian plate). Obviously then, co-ordinates of points on
the Earth's surface will slowly change due to the motion of the plate that the point
is on. Unfortunately at the current level of geodetic precision, it is not possible to
de�ne a global co-ordinate frame in which points are �xed.

• The Z-axis corresponds to the IERS Reference pole (IRP) which corresponds to
the BIH Conventional terrestrial Pole of 1984, with an uncertainty of 0.005�

• The X-axis, or IERS Reference Meridian, similarly corresponds to the BIH zero
meridian of 1984, with the same uncertainty.

Finally, note that the Precise Ephemeris which are computed by IGS (the International
GPS Geodynamics Service) and distributed over the Internet, are referred to the current
(newest) ITRF, and are computed using these co-ordinates for the tracking stations used.

3.6 The three-dimensional Helmert transformation

The form of the transformation, in the case of small rotation angles, is

 X(2)

Y (2)

Z(2)

 = (1 +m)

 1 ez −ey
−ez 1 ex
ey −ex 1

 ·
 X(1)

Y (1)

Z(1)

+

 tx
ty
tz

 , (3.1)

where
[
tx ty tz

]T
is the translation vector of the origin, m is the scale factor correc-

tion from unity, and (ex, ey, ez) are the (small) rotation angles about the respective axes.
Together we thus have seven parameters. The superscripts (1) and (2) refer to the old
and new systems, respectively.

Eq. (3.1) can be re-written and linearized as follows, using mex = mey = mez = 0, and

replacing the vector
[
X(1) Y (1) Z(1)

]T
by approximate values

[
X0 Y 0 Z0

]T
.

This is allowed as m and the e angles are all assumed small.

 X(2) −X(1)

Y (2) − Y (1)

Z(2) − Z(1)

 ≈

 m ez −ey
−ez m ex
ey −ex m


 X(1)

Y (1)

Z(1)

+

 tx
ty
tz

 ≈
≈

 m ez −ey
−ez m ex
ey −ex m


 X0

Y 0

Z0

+

 tx
ty
tz

 .
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3 Reference systems and realizations

An elaborate rearranging yields

 X
(2)
i −X

(1)
i

Y
(2)
i − Y (1)

i

Z
(2)
i − Z

(1)
i

 =

 X0
i 0 −Z0

i +Y 0
i 1 0 0

Y 0
i +Z0

i 0 −X0
i 0 1 0

Z0
i −Y 0

i +X0
i 0 0 0 1





m

ex
ey
ez
tx
ty
tz


. (3.2)

Here we have added for generality a point index i, i = 1, . . . , n. The number of points is
then n, the number of �observations� (available co-ordinate di�erences) is 3n. The full
set of these �observation equations� then becomes

X
(2)
1 −X(1)

1

Y
(2)

1 − Y (1)
1

Z
(2)
1 − Z(1)

1
...

X
(2)
i −X

(1)
i

Y
(2)
i − Y (1)

i

Z
(2)
i − Z

(1)
i

...

X
(2)
n −X(1)

Y
(2)
n − Y (1)

n

Z
(2)
n − Z(1)

n



=



X0
1 0 −Z0

1 +Y 0
1 1 0 0

Y 0
1 +Z0

1 0 −X0
1 0 1 0

Z0
1 −Y 0

1 +X0
1 0 0 0 1

...
...

...
...

...
...

...
X0
i 0 −Z0

i +Y 0
i 1 0 0

Y 0
i +Z0

i 0 −X0
i 0 1 0

Z0
i −Y 0

i +X0
i 0 0 0 1

...
...

...
...

...
...

...
X0
n 0 −Z0

n +Y 0
n 1 0 0

Y 0
n +Z0

i 0 −X0
n 0 1 0

Z0
n −Y 0

n +X0
n 0 0 0 1





m

ex
ey
ez
tx
ty
tz


. (3.3)

This is a set of observation equations of form `+v = Ax̂ (but without the residuals vector
v). There are seven unknowns x̂ on the right. They can be solved in the least-squares
sense if we have co-ordinates (X,Y, Z) in both the old (1) and the new (2) system for
at least three points, i.e., nine �observations� in the observation vector `. In fact, two
points and one co-ordinate from a third point would su�ce. However, it is always good
to have redundancy.

3.7 Transformations between ITRF realizations

For transformation parameters between the various ITRF realizations, see the IERS web
page: http://itrf.ensg.ign.fr/trans_para.php. As an example, the transformation
parameters from ITRF2008 to ITRF2005, at epoch 2005.0, http://itrf.ensg.ign.fr/
ITRF_solutions/2008/tp_08-05.php:
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3 Reference systems and realizations

T1 T2 T3 D R1 R2 R3
mm mm mm ppb 0.001� 0.001� 0.001�
-0.5 -0.9 -4.7 0.94 0.000 0.000 0.000

± 0.2 0.2 0.2 0.03 0.008 0.008 0.008
Rate 0.3 0.0 0.0 0.00 0.000 0.000 0.000
± 0.2 0.2 0.2 0.03 0.008 0.008 0.008

These parameters2 are to be used as follows: X
Y
Z


ITRF2005

(t) =

1 +

 D −R3 R2

R3 D −R1

−R2 R1 D



 X
Y
Z


ITRF2008

(t) +

+ (t− t0)
d

dt

 D −R3 R2

R3 D −R1

−R2 R1 D


 X
Y
Z


ITRF2008

(t) +

+

 T1

T2

T3

+ (t− t0)
d

dt

 T1

T2

T3

 =

=

1 +

 0.94 0 0
0 0.94 0
−0 0 0.94

 · 10−9

 ·
 X
Y
Z


ITRF2008

(t) +

+

 −0.5 + 0.3 (t− 2005.0)
−0.9
−4.7


with the numbers given, and forgetting about the uncertainties. Here ddt refers to the
rates, of which only that of T1 is non-vanishing in this example.

3.8 Map projections

Typically map projections used for topographic maps are conformal ; in the Nordic area
are used Gauÿ-Krüger and Universal Transverse Mercator.

Gauÿ-Krüger:

• Conformal transverse Mercator
• Central meridian: map scale 1.0

2Note the change in parameter names compared to the previous. For (tx, ty, tz) we now have

(T1, T2, T3); m is now called D; and (ex, ey, ez) became (R1, R2, R3).
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Projection

Equator

λ0

null meridian
Greenwich or

longitude λ0

meridian
Central

Figure 3.1: Map projection

• Central meridian spacings 3◦ in longitude

UTM:

• Conformal transverse Mercator
• Central meridian: map scale 0.9996
• Central meridian spacings 6◦ in longitude
• Zone numbers: starting from date line λ = 180◦ eastward. See table.

UTM zones:

λ (degrees) Zone Nr λ (degrees) Zone Nr
180-176 W 1 0-6 E 31
176-172 W 2 6-12 E 32

. . . . . . 12-18 E 33

λ (degrees) Zone Nr λ (degrees) Zone Nr
18-24 E 34 . . . . . .
24-30 E 35 172-176 E 59
30-36 E 36 176-180 E 60

See also http://www.dmap.co.uk/utmworld.htm.
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4 What Co-ordinate Frame Do

Measurements Give?

4.1 Real time measurement

When doing di�erential measurement in the form of code-based DGPS or carrier phase
based real time kinematic (RTK), it may be assumed that the co-ordinate solution ob-
tained is in the same reference frame as the base station(s) used are.

That would typically be the national realization of the ETRS89 system: in Finland,
EUREF-FIN, in Sweden, SWEREF-99, in Norway, EUREF-NOR94/95/96, and in Den-
mark, EUREF-DK94.

See also [LJ06] and [Lid03].

In practice one may identify this frame with WGS84, as is often done, as it agrees with
this on the decimetric level.

4.2 Static measurement

For static precise measurement, the same holds: the reference frame of the base station(s)
used transfers to the new position. However, due to the high precision of carrier phase
positioning, in large scale (national) campaigns one should compute the network solution
originally in the ITRS system in which also the satellite (precise) ephemeris are given,
and transform the result to the preferred national realization of ETRS89. See [BA].

If the base station co-ordinates are in the national realization, they should be transformed
to the ephemeris ITRS before use.

4.3 (Aside) antenna type

Using base station data assumes that the moving receiver (�rover�) uses the same antenna
type, or the software understands antenna phase centre variation modelling.

Both the RTCM-106 version 2.x and the new RTCM version 3.0 can transmit information
on antenna type in Message Type 23, and Message Type 1007-1008. Version 2.x even
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4 What Co-ordinate Frame Do Measurements Give?

o�ers the o�sets of the antenna phase centres for L1 and L2 separately, promising �mm
precision�. Version 3.0 doesn't do that.

Apparently it is up to the receiving software to handle the antenna phace centre ef-
fects intelligently, using information from the base station on antenna/radome type, and
internal calibration tables. It is not clear to what extent existing software is doing this.
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5 Case: Finland

5.1 Traditional map projections

In Finland, the traditional map projection has been Gauÿ-Krüger with zone width 3◦.
System name: kkj (�National Map Grid Co-ordinate System�) created in 1970 [Par88].
Following characteristics:

• Based on International (Hayford) reference ellipsoid of 1924; datum was taken from
the European datum of 1950 by keeping �xed the triangulation point Simpsiö (nr.
90), at

� latitude and longitude values from the ED50 European adjustment, and
� geoidal undulation from the Bomford astro-geodetic geoid [Bom63].

• Map plane co-ordinates were obtained using Gauÿ-Krüger for central meridians of
19◦, 21◦, 24◦, 27◦, 30◦; for small-scale all-Finland maps, 27◦ is used.

• These co-ordinates (x, y) were further transformed in the plane using a four-parameter
similarity (�Helmert�) transformation in order to achieve agreement with the pre-
existing provisional vvj (�Old State System�, also �Helsinki System�) co-ordinates,
cf. [Oll93].

Equation:[
x
y

]
kkj

=

[
1.00000075 −0.00000439
0.00000439 1.00000075

] [
x
y

]
ED50

+

[
−61.571 m
95.693 m

]

5.2 Modern map projections

The modern Finnish system is quite di�erent:

• Based on the GRS80 reference ellipsoid of 1980; datum is called EUREF-FIN,
created by keeping �xed four stations �xed to their ITRF96 values at epoch 1997.0:
the permanent GPS stations Metsähovi, Vaasa, Joensuu and Sodankylä [OKP00].
Then, a transformation [BA95] was applied to obtain co-ordinates in ETRF89.
Thus, the datum is correctly described as ETRF89, but the epoch remains 1997.0,
as no correction for individual station motion (mostly, glacial isostatic adjustment)
was made in the transformation.
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5 Case: Finland

1 2 3 4

24◦ E 30◦ E
y27◦ E21◦ E

x

65◦ N

60◦ N

6 438 000 m

7 992 000 m

70◦ N

Figure 5.1: Four projection zones for the Finnish Gauss-Krüger projection

Equation:

XE (tC) = XI
yy (tC) + Tyy +

 0 −Ṙ3 Ṙ2

Ṙ3 0 −Ṙ1

−Ṙ2 Ṙ1 0


yy

XI
yy (tC) · (tC − 1989.0)

with tC observations central epoch, yy = (19)96. The values T96 and Ṙi,96 are tabulated
in [BA] Tables 3 and 4.

• For small-scale and topographic maps, the UTM projection is used with a central
meridian of 27◦ (zone 35) for the whole country, producing the ETRS-TM35FIN
plane co-ordinate system. This also de�nes the map sheet division. However, on
maps in parts of Finland where another central meridian would be more appropriate
(like zone 34, central meridian 21◦), the corresponding co-ordinate grid is also
printed on the map, in purple [Ano03].

• For large scale maps, such as used for planning and cadastral work, the Gauÿ-
Krüger projection continues to be used (but based on the above reference ellipsoid
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5 Case: Finland

and datum), with a central meridian interval of only one degree: ETRS-GKn, where
n designates the central meridian longitude. This avoids the problem of signi�cant
scale distortions.

5.3 The triangulated a�ne transformation used in Finland

5.3.1 Plane co-ordinates

The National Land Survey o�ers a facility to convert kkj co-ordinates to the new ETRS89-
TM35FIN system of projection co-ordinates. The method is described in the publication

[Ano03], where it is proposed to use for the plane co-ordinate transformation between
the projection co-ordinates of ETRS-89 and the ykj co-ordinate system, a triangle-wise

a�ne transformation.

Inside each triangle we may write the a�ne transformation can be written like

x(2) = ∆x+ a1x
(1) + a2y

(1)

y(2) = ∆y + b1x
(1) + b2y

(1)

where
(
x(1), y(1)

)
are the point co-ordinates in ETRS-GK27, and

(
x(2), y(2)

)
are the

co-ordinates of the same point in ykj. This transformation formula has six parameters :
∆x, ∆y, a1, a2, b1 ja b2. If, in the three corners of the triangle, are given both

(
x(1), y(1)

)
and

(
x(2), y(2)

)
, we can solve for these uniquely .

The transformation formula obtained is inside the triangles linear and continuous across
the edges, but not di�erentiable: the scale is discontinuous across triangle edges. Because
the mapping is not conformal either, the scale will also be dependent upon the direction
considered.

A useful property of triangulation is, that it can be locally �patched� : if better data is
available in the local area � a denser point set, whose co-ordinate pairs

(
x(i), y(i)

)
, i = 1, 2

are known � then we can take away only the triangles of that area and replace them by
a larger number of smaller triangle, inside which the transformation will become more
precise. This is precisely the procedure that local players, like municipalities, can use to
advantage.

Write these equations in vector form:[
x(2)

y(2)

]
=

[
∆x
∆y

]
+

[
a1 a2

b1 b2

] [
x(1)

y(1)

]
.

Most often the co-ordinates in the (1)and (2)datums are close to each other, i.e.,
[

∆x ∆y
]T

are small. In that case we may write the shifts

δx ≡ x(2) − x(1) = ∆x+ (a1 − 1)x(1) + a2y
(1),

δy ≡ y(2) − y(1) = ∆y + b1x
(1) + (b2 − 1) y(1).
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Figure 5.2: Lappeenranta densi�cation of the national triangular grid

If we now de�ne

∆x ≡
[

∆x
∆y

]
, A =

[
a11 a12

a21 a22

]
≡
[
a1 − 1 a2

b1 b2 − 1

]
,

we obtain the short form

δx = ∆x + Ax(1).

Also in this generally, if the co-ordinates are close together, the elements of A will be
numerically small. Let there be a triangle ABC. Then we have given the shift vectors
of the corners

δxA = ∆x + Ax(1)
A ,

δxB = ∆x + Ax(1)
B ,

δxC = ∆x + Ax(1)
C .
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5 Case: Finland

Write this out in components, with ∆x,A on the right hand side:

δxA = ∆x+ a11x
(1)
A + a12y

(1)
A

δyA = ∆y + a21x
(1)
A + a22y

(1)
A

δxB = ∆x+ a11x
(1)
B + a12y

(1)
B

δyB = ∆y + a12x
(1)
B + a22y

(1)
B

δxC = ∆x+ a11x
(1)
C + a12y

(1)
C

δyC = ∆y + a21x
(1)
C + a22y

(1)
C

or in matrix form



δxA
δyA
δxB
δyB
δxC
δyC


=



1 0 x
(1)
A 0 y

(1)
A 0

0 1 0 x
(1)
A 0 y

(1)
A

1 0 x
(1)
B 0 y

(1)
B 0

0 1 0 x
(1)
B 0 y

(1)
B

1 0 x
(1)
C 0 y

(1)
C 0

0 1 0 x
(1)
C 0 y

(1)
C





∆x
∆y
a11

a21

a12

a22


,

from which they can all be solved.

Let us write the coordinates (x, y) as follows:

x = pAxA + pBxB + pCxC ,

y = pAyA + pByB + pCyC,

with the further condition pA + pB + pC = 1. Then also

δx = pAδxA + pBδxB + pCδxC , (5.1)

δy = pAδyA + pBδyB + pCδyC. (5.2)

The set of three numbers
(
pA, pB, pC

)
is called the barycentric co-ordinates of point P

See �gure 5.3.

They can be found as follows (geometrically pA = ω(∆BCP )
ω(∆ABC) etc., where ω is the surface

area of the triangle) using determinants :

pA =

∣∣∣∣∣∣∣
xB xC x
yB yC y
1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣
, pB =

∣∣∣∣∣∣∣
xC xA x
yC yA y
1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣
, pC =

∣∣∣∣∣∣∣
xA xB x
yA yB y
1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xA xB xC
yA yB yC
1 1 1

∣∣∣∣∣∣∣
.

These equations are very suitable for coding.
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Figure 5.3: Computing barycentric co-ordinates as the ratio of the surface areas of two
triangles

5.3.2 Heights

The same method for triangulated linear transformation can also be used for one-dimensional
co-ordinates like heights. In this case the model reduces to a TIN (Triangulated Irregular
Network) representation.

5.4 Inter-zone transformations

The easy way to do inter-zone transformations between zone 1 and zone 2 is:

(x, y)1

Proj 1
⇐⇒

(ϕ, λ)
Proj 2
⇐⇒

(x, y)2

However, also direct transformations can be constructed. As the projection is conformal
for both zones, it is possible to express the transformation as a complex polynomial in
the (x, y) map plane. One can solve the coe�cients of this polynomial by a least-squares
�t to a small number of points in the target area for which both map co-ordinates have
been computed, and then hard-wired in the transformation software. This is numerically
very e�cient, and not many polynomial coe�cients are needed for adjacent zones.
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6 Height Systems and Vertical Datums

6.1 Height types

There are two dominant height types in the world: orthometric heights and normal

heights. Dynamic heights are much lesser used.

6.2 Orthometric heights

Levelled heights are related to geopotential numbers by local gravity. Heights obtained
by summing levelled height di�erences ∆H:

∑3
i=1 ∆Hi, are not the same as �real� heights

from the geoid:
∑3
i=1 ∆H ′i along the plumbline. Note how equipotential surfaces are not

parallel: thus, water may �ow �upward�.

Note also that the gravity vector g is everywhere perpendicular to equipotential surfaces,
and its length is inversely proportional to distance between the surfaces for �round� values
of the geopotential.

P
C

W

Equipotential

Normal

H

HdynGeoid

Topographic surface

Orthometric

Plumbline
Dynamic

H∗surface

W
0

Figure 6.1: The di�erent height types, simply explained. The di�erences between them
are exaggerated
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H

P

g

g

Geoid

WP

W0
∆H1

∆H2

∆H3

∆H ′2

∆H ′1

Figure 6.2: The de�nition of orthometric heights

Telluroid

Topography

Quasi-geoid

hH∗

H

N ζ

ζ

Geoid

Figure 6.3: Geoid, telluroid and quasi-geoid

Computing orthometric heights:

H =
CP
ḡ
,

with

ḡ =
1
H

∫ H

0
g (z) dz,

with z along the plumbline. Solved iteratively. Problem: we don't really know g (z) ⇒
often, we will use the Helmert height approximation instead of exact orthometric height.

6.3 Normal heights

Normal heights are based on Molodensky's theory [MEY62]. In this theory, we need
a surface called the telluroid :
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In this theory, we talk about a point Q where the normal potential is equal to P :s true
potential: UQ = WP . Then, we say that Q is P :s telluroid mapping.

Now, normal height is

H∗ =
C

γ0H
,

with γ0H the mean normal gravity along the ellipsoidal normal from 0 (ellipsoid) to
H∗(telluroid, i.e., level of Q).

Molodensky also proposed the height anomaly :

ζ =
W − U
γ̄Hh

with

γ̄Hh =
1
ζ

∫ h

H∗
γ(z)dz,

i.e., integrated from the telluroid to the Earth surface. . . note that z is counted from
the reference ellipsoid.

6.4 Geoid, quasi-geoid, geopotential

The geoid is connected with height systems through the geopotential. We have, at sea
level

T = W − U

the disturbing potential T , with true geopotential W and normal potential U ; and the
geoid undulation

N =
T (0)
g (0)

(Bruns) where g is the average gravity at sea level.

We have, with H orthometric height and h ellipsoidal height:

h = H +N.

When using normal heights H∗, we would like to use a similar equation:

h = H∗ + ζ
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Vertaus−
ellipsoidi   

Luotiviiva

O

(e.g., measured by GPS)

Height above ellipsoid

h

H

Topography

Plumbline

Plumbline

h = H +NGeoid, height

Orthometric height

from ellipsoid N

mass

Centre of

Figure 6.4: Heights above the geoid and above the reference ellipsoid in a global picture

where we call ζ the �quasi-geoid height�. It is also equal to

ζ (H∗) =
T (H∗)
g (H∗)

,

the so-called height anomaly on the terrain, not at sea level. So, note that ζ is a spatial

�eld, not a 2-D map.

Gravity anomalies If we measure gravity g in a point P , its height �above sea level� is
H, and its latitude is Φ, we may compute its gravity anomaly as follows:

∆gP ≡ gP − γ (H,Φ) ,

where γ (H,Φ) is normal gravity, computed at height H and ja latitude Φ. Thus
are de�ned free air anomalies.

Bouguer anomalies are computed in order to remove the attraction by the masses of
the Earth's crust located above sea level, i.e., the geoid. The true topography is
approximated by a Bouguer plate, see �gure 6.6. The di�erence between the
Bouguer plate attraction and the true attraction is called the terrain correction

(areas I and II).
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H

P

Sea level, geoid

Reference
ellipsoid

Topography

�Tunnel�

Plumbline

�Shaft�

Figure 6.5: An �engineering de�nition� of the geoid and orthometric height

As the di�erence between H and H∗ is approximately equal to

H −H∗ = −∆gB
γ

H,

it follows that also
ζ −N = −∆gB

γ
H.

Here ∆gB is Bouguer gravity anomaly at point considered. In mountainous terrain,
approx. (in metres and milligals)

∆gB ≈ −0.1H,

so it follows
ζ −N = H −H∗ ≈ −10−7H2,

expressing everything in metres. Thus, for 1 km high mountains we get -10 cm, but for
100 m high hills, only -1 mm.
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Laskentapiste P

Topogra�a

Bouguer-laatta
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II

I

d = H

Kuva 6.6: Bouguer plate as an approximation to the topography

6.5 Geoid tidal types

A complication with height systems and (quasi-)geoids is that there are di�erent ways in
use to correct for the permanent part of the tidal potential caused by Sun and Moon:

• The mean geoid, where both direct e�ect of the lunisolar tidal potential, and e�ect
of change in geopotential due to tidal deformation, have been left uncorrected. This
geoid solution is best suited to oceanographic use as undisturbed mean sea level
will strive toward this geoid.

• The null geoid, where direct tidal potential has been removed, but tidal deforma-
tion potential left in. Merit of this geoid solution is that it produces a potential
associated only with masses internal to geoid (much theory, including the Stokes
equation, is based on this assumption), but no questionable deformation hypotheses
needed.

• The tide-free geoid, where both the direct e�ect of the lunisolar tidal potential has
been computationally removed, including its permanent part, and change in the
geopotential due to the permanent tidal deformation.

In computations with geoid heights, orthometric / normal heights and ellipsoidal (GPS)
heights, one must have all three reduced according to the same treatment of the perma-
nent tide. E.g., in

h = N +H

all three quantities must be considered.

Sweden and Denmark have used non-tidal heights; in Finland, heights have been mean.
The correction from nontidal to mean is given by [EM96]:

∆H = 29.6γ
(
sin2 ϕN − sin2 ϕS

)
,
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where ϕN and ϕS are the latitudes of a Northern and Southern station, and γ ≈ 0.7 . . . 0.8
is the elasticity factor.

6.6 Old height datums

A vertical reference system must be realized : this means choosing a starting point and
its height. Traditionally, every nation has chosen its own height datum. The old (mid to
late 20th century) height datums are:

Sweden: RH70, the datum point computationally being Amsterdam (NAP), based on
second precise levelling.

Norway: NN1954 for South of country, normal or orthometric (unclear). Formal datum
point: Tregde. No uni�ed vertical datum [LPMS06]

Finland: N60, the datum point being a polished surface of a stone pillar in the garden
of Helsinki astronomical observatory. The agreed height corresponded closely to
mean sea level in Helsinki Harbour for 1960.0. The height type was Helmert heights
using crustal densities from a geological map; a good approximation to orthometric
heights.

Denmark: DNN (Dansk Normal Nul, Danish Ordnance Datum). Based on ten tide
gauges where sea level was monitored 1885-1904, and connected across the country
by precise levelling, including hydrostatic transfers
(*). The formal datum point was a metal plate attached to the wall of Århus
Cathedral.

*) http://www.slideboom.com/presentations/37439/DNN-og-andre-kotesystemer

6.7 New height datums

Modern height datums have been and are being established throughout the Nordic region.
The situation is now, that it is desirable that these datums are internationally compatible.
This means:

• All are based upon the Amsterdam datum (NAP); the Baltic levelling Ring used
to connect them

• All are of the same height type: normal heights

• Important work doen by EUVN (European Vertical Network) EUREF working
group

• True global height datum at this point still impossible

• Use of these heights together with satellite techniques (like GPS) should be straight-
forward.
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Sweden: RH2000; Finland: N2000; Denmark: DVR. In Norway, a new height datum has
not yet been established, but see [LOPS07].
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We are entering an age where creating height datums at the precision that is technolog-
ically possible, requires understanding of the geophysics involved. This includes

• The time-varying and quasi-permanent sea surface topography

• The ongoing process of glacial isostatic adjustment, due to old (≈15 ka) deglaciation
• The ongoing process of sea level rise, which is partly due also to continental ice
sheet melt

• Techniques for integrating sea level data from tide gauges and satellite altimetry

• The acceleration of current sea level rise

• The unevenness in this process, as ice sheet mass is being redistributed [MTDM01]

• The isostatic response to this process

This is an un�nished story during our lifetime.

7.1 Sea Surface Topography

Sea surface topography is the (semi-) permanent deviation of sea level from an equipo-
tential surface, i.e., the geoid.

SST is typically of magnitude few decimetres. Intercontinentally it can be as large as
over one metre. One should also be aware that SST may change as climate changes; such
changes are suspected for the Baltic Sea, as the pumping e�ect in the Danish Straits
changes due to depressions taking a di�erent track.

When de�ning a vertical reference frame, obviously these e�ects should be considered.

Source: [PS00]

SST change can be several decimetres. Considering global warming according to the
IPCC A1 scenario, comparing the period 2091-2100 to 1981-2000, [JSS09] found changes
for the North Atlantic due to changes in ocean circulation of this magnitude. As they
note, �The dynamic SLR is mainly a result of the cessation of the deep convection and
deep-water formation in the Labrador Sea, and the slowdown of the subpolar gyre.�
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7.2 Glacial isostatic adjustment

This phenomenon, more commonly known as �land uplift� � in spite of this being a
three-dimensional phenomenon! � , obviously a�ects the de�nition of vertical reference
systems. We already saw how, in the de�nition of the three-dimensional EUREF-FIN
datum in Finland, the epoch for crustal motions was kept at 1997.0, although the co-
ordinate reference system is stated as ETRS89. In the de�nition of European terrestrial
reference frames, glacial isostatic adjustment is not accounted for.

A good model for the post-glacial land uplift, usable for correcting heights measured
by GPS into heights �above sea level�, was constructed using least-squares collocation
[Ves06]. One should expect such models to become o�cial in the future, when height
system maintenance is moving to GPS, traditional precise levelling being too expensive.

7.3 Tide gauges, altimetry, sea level

The advent of satellite radar altimetry has made possible the combination of tide gauge
and altimetry data in an optimal way using PCA; see [CW06]. Such studies are tricky
and require, e.g., careful corrections for the ongoing glacial isostatic adjustment, both at
the tide gauge sites used, and over the ocean at large. The merit of the approach is that
the altimetry allows the assessment of the behaviour of the sea surface over the open
ocean, and applying this to the geographically more limited data from tide gauges. From
this study and others, it is clear that sea level rise has increased over the 20th century:
the rise from 1870 to 2000 amounts to 20 cm, but, while over the whole 20th century
sea level rise has amounted to 1.31 ± 0.30 mm/yr[WMBA07], over the satellite altimetry
period 1993-2008 it has been 3.1± 0.4 mm/yr [CL10].

7.4 Geodynamics and the vertical reference

See [MTDM01] for how the sea level rise due to the Greenland deglaciation is uneven in
the Northern hemisphere.

Sea level rise will be very relevant for vertical reference, and vertical reference has im-
mediate relevance for sea level rise impact studies.
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Figure 7.1: Sea level rise according to [CW06]
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