Contribution of HP Clocks to the BIH's International Atomic Time Scale (IATS)

Application Note 52-4

Table of Contents

Introduction 5
International Atomic Time Scale 5
Clock Weighting 7
Clock-Weight Distribution 7
Clock Performances 8
Clock Efficiency and Merit 8
Conclusion 9

Introduction

Since the introduction of the HP 5060A in 1964, HP's Cesium Beam Frequency Standards (atomic clocks) have continued to play a major role in the timekeeping community. These clocks were first used at timekeeping observatories to calibrate crystal oscillators and to establish independent atomic time scales. Soon the need arose for time comparisons between observatories to improve the worldwide accuracy of time and time interval requested for precise navigation, geodesic measurements, space probe localization, etc. This led to the creation of International Atomic Time (IAT), formally defined by the 14th General Conference of Weights \& Measures in October 1971. Responsibility was given to the Bureau International de L'Heure (BIH) to keep the unit interval of the IAT as close as possible to the definition of the second, based on the hyperfine transition of the Cesium 133 atom.

Precision time comparisons are made using LORAN-C, television networks and, since 1983, through the Navstar Global Positioning System (GPS). The BIH computes the IAT by averaging the clock data over a sample time of two months using an algorithm called "ALGOS". From this computation, the participating laboratories are informed about the "bimonthly" clock drift rate of each individual time standard referred to the now steered IAT scale. The long-term stability of each time standard is indicated by assigning a "w eight," which ranks from zero (lowest

performance clocks) to 200
Figure 1. Clocks Participating in (upper limit for the best clocks). Both of these figures are published bimonthly and annually by the BIH.
Actual clock performance, as "seen" by the BIH through their intercomparison netw ork, provides valuable data which can be used to highlight various aspects of clock behavior, especially when comparing the results of different models and options of commercial cesium clocks.

International Atomic Time Scale

The IAT is elaborated by comparisons among all clocks in the data base, both those sold commercially, and those developed independently by the participating laboratories. In the thirteen years since the BIH started publishing results, it is interesting to compare the participation of various clocks in the system. Figure 1 illustrates the evolution for commercial cesium standards
only. The lower graph shows the growth of HP clocks in the IATS. The actual number of different commercial clocks appearing at least once in the BIH publications was 337 by the end of 1984. However, for various reasons, a number of commercial clocks show up only once or for a very short period of time.

A proper comparison can be made only for those clocks actively involved in the IATS and which have participated at least once during an uninterrupted period of at least one year. On this basis, only 236 clocks qualify.

This leads to Figure 2, where HP's contribution to the IAT over the past 13 years is shown through its three commercially available models:

- HP 5060A: First commercially available cesium clock. Discontinued from active manufacture in 1969, a number are still actively participating in the IATS. Some are equipped with the high-performance cesium beam tube.
- HP 5061A: Model with a standard cesium beam tube.
- HP 5061A/004: The highperformance version with a dual cesium beam tube.

The evolution of the various models and options is shown in Figure 3, where the growing use of the high-performance version (option 004) of the HP 5061A demonstrates customer satisfaction in an application where the highest stability and accuracy is required.

Figure 2. Cesium Clocks in BIH/IAT Scale (1972-84)

Figure 3. Active Cesium Clocks in BIH/IAT Scale

Figure 4. BIH
Attributed Weights
Distribution
(0/200)

Figure 5. Clock
Performances --
Worldwide

Clock Weighting

As mentioned above, the BIH computes the clock intercomparison data and attributes a "weight" which quantifies by a number from zero to 200 the long-term stability over a 2 month interval for both the clock and the intercomparing system (LORAN-C, TV, GPS. . .). A weight of zero means that the BIH noticed a frequency change of $\geq 5.4 \times 10^{-13}$ (or a change in clock rate of $\geq 47 \mathrm{~ns} /$ day) over the previous 2 months averaging period. A weight of 200 denotes a frequency instability of $\leq 8.1 \times$ 10^{-14} (or $\leq 7 \mathrm{~ns} /$ day) and a weight of >180 is $\leq 1.3 \times 10^{-13}$ (or $\leq 11 \mathrm{~ns} /$ day).

Until December 1980, the maximum clock weight was limited to 100 . In order to simplify the analysis of clock weightings, values published before J anuary 1981 have been doubled. In doing so, the apparent clock performance no longer strictly corresponds to its actual one, but this is of no real importance when making clock comparisons. At introduction into the IATS, clocks are assigned a weight of zero. These are not included in the analysis to follow.

Clock-Weight Distribution

Figure 4 shows the clock-weight distribution for actively participating clocks in the IATS. Again, notice the dominance of the HP 5061A/004 (high performance) over the others, with 56% of their total number of attributed weights within 181 to 200. Also notice the dominance of all HP clocks over all other commercial units at clock weights greater than 100.

Clock Performances

Also of interest is the evolution of clock quality as shown by analyzing the number of weights ≥ 180 that each received during the past 13 years. Figure 5 plots this by year. It also shows a general behavior for all models consisting of up and down trends, which may be due to both technical and economic reasons.

Figure 6 shows the clock-weighting data obtained at one laboratory, (the PTB in West Germany), compared to that seen for similar HP 5061A/004 instruments in the IATS. This demonstrates a possible performance limit for the HP 5061A/004. In this case too, several reasons may underlie such an outstanding and unique performance achievement.

Clock Efficiency and Merit

From Figures 5 and 6 one may conclude that the arbitrary ratio of "Weights >180/Total Weights per Cs Model (\%)" quantifies, to some extent, the clock quality (together with the intercomparison system) and, if expressed in \%, represents its efficiency in the time scale. As for any aging device, after a certain time of operation, a fatal performance degradation process causes a decay of its long-term stability. The highest figure of efficiency, therefore, corresponds most likely (and theoretically) to new clocks or to those with a new

Figure 6. PTB's Clocks Performance vs. Others

Figure 7.
Efficiency of IATS
Cesium Clocks/
MFR-OPT

Cesium Beam Tube.
Another approach might be to evaluate the clock on its overall lifetime contribution. One method may be to formulate the two arguments involved in the efficiency (weights >180 and total weights) so that each one contributes to a figure of merit - by multiplying them. Therefore, the figure of merit of a clock represents the product of the number of weights >180 by the total number of weights this clock received during all the time it was participating in the IATS. Table 1 shows the lists of the first 35 highest ranked clocks (out of 236) for each above defined figure.

It may be seen that only 8 clocks succeed in appearing in both tables and, not surprisingly, 7 of them are the high performance version of the HP 5061A. The superior performance of the HP 5061A/004 is also illustrated in Figure 7, which outlines the "efficiency" distribution for HP clocks and commercial models from other manufacturers. Here the outstanding dominance by the HP standards is clearly evident, especially at the higher efficiency factors.

Conclusion

Although the BIH published data are subject to restricted usage and subtle interpretation, it may be seen from the above that a careful selection of evaluation parameters allows one to highlight distinctive characteristics of commercial Cesium clocks participating in the IATS.

Table 1. Merit vs. Efficiency of Cesium Clocks Participating in the BIH/IAT Scale

For more information on HP precision frequency and time standards, please request any of the following:

AN 1289: The Science of Timekeeping
HP 105A/B Quartz Oscillator Data Sheet
HP 5087A Distribution Amplifier Data Sheet
HP 5089A Standby Power Supply Data Sheet
Instrumentation Catalog
Call your local HP sales office for your free literature, or w rite to the nearest address listed on the back page.

(hp) $\begin{aligned} & \text { HEWLETT } \\ & \text { PACKARD }\end{aligned}$

For more information about HewlettPackard test and measurement products, applications, services and for a current sales office listing, visit our web site, http://www.hp.com/go/tmdir.
You can also contact one of the following centers and ask for a test and measurement sales representative.

United States:
Hewlett-Packard Company Test and Measurement Call Center
P.O. Box 4026

Englewood, CO 80155-4026
18004524844
C anada:
Hewlett-Packard Canada Ltd.
5150 Spectrum Way
Mississauga, Ontario
L4W 5G1
(905) 206-4725

E urope:

Hewlett-Packard
E uropean Marketing Centre
P.O. Box 999

1180 AZ Amstelveen
The Netherlands
(21 20) 5479900

J apan:
Hewlett-Packard J apan Ltd.
Measurement Assistance Center
9-1, Takakura-Cho, Hachioji-Shi,
Tokyo 192, Japan
Tel: (81-426) 56-7832
Fax: (81-426) 56-7840

Latin America:

Hewlett-Packard
Latin American Region Headquarters
5200 Blue Lagoon Drive
9th Floor
Miami, Florida 33126
U.S.A.
(305) 267 4245/4220

Australia/New Zealand:
Hewlett-Packard Australia Ltd.
31-41 J oseph Street
Blackburn, Victoria 3130
Australia
1800629485

Asia Pacific:

Hewlett-Packard Asia Pacific Ltd.
17-21/F Shell Tower, Time Square,
1 Matheson Street, Causeway Bay,
Hong Kong
Tel: (852) 25997777
Fax: (852) 25069285

Data Subject to Change
Printed in U.S.A. J une 1997
Hewlett-Packard Company
Copyright © 1997
5965-9782E

